Biotechnical Genetics of Antibiotic Biosynthesis

  • A. A. Brakhage
  • M. L. Caruso
Part of the The Mycota book series (MYCOTA, volume 2)


Antibiotics are substances with low molecular weight which inhibit the growth of microorganisms at low concentrations. The term “low molecular weight substances” refers to molecules of at most a few thousand Dalton and does not include those complex proteins that also have antibacterial properties (Lancini and Parenti 1982). Antibiotics not only include antibacterial substances but also compounds with antifungal, antitumor, antiviral etc. activities.


Biosynthesis Gene Aspergillus Nidulans Penicillium Chrysogenum Penicillin Production Antibiotic Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham EP (1990) Selective reminiscences of (3-lactam antibiotics: early research on penicillin and cephalosporins. Bioessays 12: 601–606PubMedCrossRefGoogle Scholar
  2. Affenzeller K, Kubicek CP (1991) Evidence for a compartmentation of penicillin biosynthesis in a high-and a low-producing strain of Penicillium chrysogenum. J Gen Microbiol 137: 1653–1660PubMedCrossRefGoogle Scholar
  3. Aharonowitz Y, Cohen G, Martin JF (1992) Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. Annu Rev Microbiol 46: 461–495PubMedCrossRefGoogle Scholar
  4. Aharonowitz Y, Bergmeyer J, Cantoral JM, Cohen G, Demain A, Fink U, Kinghorn J, Kleinkauf H, MacCabe A, Palissa H, Pfeifer E, Schwecke T, van Liempt H, von Döhren H, Wolfe S, Zhang J (1993) S-(L-a-aminoadipyl)-L-cysteinyl-D-valine synthetase, the multi-enzyme integrating the four primary reactions in (3-lactam biosynthesis, as a model peptide synthetase. Biotechnology (NY) 11: 807–810CrossRefGoogle Scholar
  5. Alexander DC, Jensen SE (1998) Investigation of the Streptomyces clavuligerus cephamycin C gene cluster and its regulation by the CcaR protein. J Bacteriol 180: 4068–4079PubMedGoogle Scholar
  6. Alvarez E, Cantoral JM, Barredo JL, Diez B, Martin JF (1987) Purification to homogeneity and characterization of acylcoenzyme A:6-amino penicillanic acid acyltransferase of Penicillium chrysogenum. Antimicrob Agents Chemother 31: 1675–1682CrossRefGoogle Scholar
  7. Alvarez E, Meesschaert B, Montenegro E, Gutiérrez S, Diez B, Barredo JL, Martin JF (1993) The isopenicillin N acyltransferase of Penicillium chrysogenum has isopenicillin N amidohydrolase, 6-aminopenicillanic acid acyltransferase and penicillin amidase activities, all of which are encoded by the single penDE gene. Eur J Biochem 215: 323–332PubMedCrossRefGoogle Scholar
  8. Alvi KA, Reeves CD, Peterson J, Lein J (1995) Isolation and identification of a new cephem compound from Penicillium chrysogenum strains expressing deacetoxycephalosporin synthase activity. J Antibiot (Tokyo) 48: 338–340CrossRefGoogle Scholar
  9. Aplin RT, Baldwin JE, Cole SC, Sutherland JD, Tobin MB (1993a) On the production of alpha, betaheterodimeric acyl-coenzyme A:isopenicillin N-acyltransferase of Penicillium chrysogenum. Studies using a recombinant source. FEBS Lett 319: 166–170Google Scholar
  10. Aplin RT, Baldwin JE, Roach PL, Robinson CV, Schofield CJ. (1993b) Investigations into the post-translational modification and mechanism of isopenicillin N:acylCoA acyltransferase using electrospray mass spectrometry. Biochem J 294: 357–363PubMedGoogle Scholar
  11. Arst HN Jr (1996) Regulation of gene expression by pH. In: Brambl R, Marzluf GA (eds) The Mycota III. Biochemistry and molecular biology. Springer, Berlin Heidelberg New York, pp 235–240Google Scholar
  12. Arst HN Jr, Scazzocchio C (1985) Formal genetic methodology of Aspergillus nidulans as applied to the study of control systems. In: Bennett JW, Lasure LL (eds) Gene manipulations in fungi. Academic Press, London, pp 309–343Google Scholar
  13. Bailey C,Arst HN Jr (1975) Carbon catabolite repression in Aspergillus nidulans. Eur J Biochem 51: 573–577CrossRefGoogle Scholar
  14. Baldwin JE, Abraham EP (1988) The biosynthesis of penicillins and cephalosporins. Nat Prod Rep 5: 129–145PubMedCrossRefGoogle Scholar
  15. Baldwin JE, Adlington RM, Moroney SE, Field LD, Ting H-H (1984) Stepwise ring closure in penicillin biosynthesis. Initial ß-lactam formation. J Chem Soc Chem Commun 1984: 984–986Google Scholar
  16. Baldwin JE, Gagnon J, Ting H-H (1985) N-terminal amino acid sequence and some properties of isopenicillin-N synthetase from Cephalosporium acremonium. FEBS Lett 188: 253–256PubMedCrossRefGoogle Scholar
  17. Baldwin JE, Bird JW, Field RA, O’Callaghan NM, Schofield CJ, Willis AC (1991) Isolation and partial characterization of ACV synthetase from Cephalosporium acremonium and Streptomyces clavuligerus. Evidence for the presence of phosphopantothenate in ACV synthetase. J Antibiot 44: 241–248Google Scholar
  18. Baldwin JE, Shiau C-Y, Byford MF, Schofield CJ (1994) Substrate specificity of S-(L-a-aminoadipyl)-Lcysteinyl-D-valine synthetase from Cephalosporium acremonium: demonstration of the structure of several unnatural tripeptide products. Biochem J 301: 367372Google Scholar
  19. Barredo JL, Diez B, Alvarez E, Martin JF (1989a) Large amplification of a 35-kb DNA fragment carrying two penicillin biosynthetic genes in high penicillin producing strains of P. chrysogenum. Curr Genet 16: 453–459PubMedCrossRefGoogle Scholar
  20. Barredo JL, van Solingen P, Diez B, Alvarez E, Cantoral JM, Kattevilder A, Smaal EB, Groenen MAM, Veenstra AE, Martin JF (1989b) Cloning and characterization of the acyl-coenzyme A:6-amino-penicillanic-acid-acyltransferase gene of Penicillium chrysogenum. Gene 83: 291–300PubMedCrossRefGoogle Scholar
  21. Behmer CJ, Demain AL (1983) Further studies on carbon catabolite regulation of ß-lactam antibiotic synthesis in Cephalosporium acremonium. Curr Microbiol 8: 107–114CrossRefGoogle Scholar
  22. Bennett JW, Bentley R (1989) What’s in a name? Microbial secondary metabolism. In: Neidleman SL (ed) Advances in applied microbiology, vol 34. Academic Press, London, pp 1–28Google Scholar
  23. Bhatnagar D, Yu J, Ehrlich KC (2002) Toxins of filamentous fungi. Chem Immunol 81: 167–206PubMedCrossRefGoogle Scholar
  24. Borovok I, Landman O, Kreisberg-Zakarin R, Aharonowitz Y, Cohen G (1996) Ferrous active site of isopenicillin N synthase: genetic and sequence analysis of the endogenous ligands. Biochemistry 35: 1981–1987Google Scholar
  25. Brakhage AA (1997) Molecular regulation of the penicillin biosynthesis in Aspergillus nidulans. FEMS Microbiol Lett 148: 1–10PubMedCrossRefGoogle Scholar
  26. Brakhage AA (1998) Molecular regulation of 3-lactam biosynthesis in filamentous fungi. Microbiol Mol Biol Rev 62: 547–585PubMedGoogle Scholar
  27. Brakhage AA, Turner G (1995) Biotechnical genetics of antibiotic biosynthesis. In: Kück U (ed) The Mycota II. Genetics and biotechnology. Springer, Berlin Heidelberg New York, pp 263–285Google Scholar
  28. Brakhage AA, van den Brulle J (1995) Use of reporter genes to identify recessive trans-acting mutations specifically involved in the regulation of Aspergillus nidulans penicillin biosynthesis genes. J Bacteriol 177: 2781–2788PubMedGoogle Scholar
  29. Brakhage AA, Browne P, Turner G (1992) Regulation of Aspergillus nidulans penicillin biosynthesis and penicillin biosynthesis genes acvA and ipnA by glucose. J Bacteriol 174: 3789–3799PubMedGoogle Scholar
  30. Brakhage AA, Browne P, Turner G (1994) Analysis of the regulation of the penicillin biosynthesis genes of Aspergillus nidulans by targeted disruption of the acvA gene. Mol Gen Genet 242: 57–64PubMedGoogle Scholar
  31. Brakhage AA, Andrianopoulos A, Kato M, Steidl S, Davis MA, Tsukagoshi N, Hynes MJ (1999) HAP-like CCAAT-binding complexes in filamentous fungi: implications for biotechnology. Fungal Genet Biol 27: 243–252PubMedCrossRefGoogle Scholar
  32. Brotzu G (1948) Ricerche su di un nuovo antibiotico. Lavori dell’Instituto d’Igiene di Cagliari 1948, pp 1–11Google Scholar
  33. Brunner R, Röhr M (1975) Phenylacyl:coenzyme A ligase. Methods Enzymol 43: 476–481PubMedCrossRefGoogle Scholar
  34. Bunnel CA, Luke WD, Perry FM Jr (1986) Industrial manufacture of cephalosporins. In: Queener SF, Webber JA, Queener SW (eds) (3-Lactam antibiotics for clinical use. Marcel, New York, pp 255–284Google Scholar
  35. Cantoral JM, Gutiérrez S, Fierro F, Gil-Espinosa S, van Liempt H, Martin JF (1993) Biochemical characterisation and molecular genetics of nine mutants of Penicillium chrysogenum impaired in penicillin biosynthesis. J Biol Chem 268: 737–744PubMedGoogle Scholar
  36. Cantwell CA, Beckmann RJ, Dotzlaf RJ, Fisher DL, Skatrud PL, Yeh W-K, Queener SW (1990) Cloning and expression of a hybrid S. clavuligerus cefE gene in R chrysogenum. Curr Genet 17: 213–221PubMedCrossRefGoogle Scholar
  37. Cantwell C, Beckmann RJ, Whiteman P, Queener SW, Abraham EP (1992) Isolation of deacetoxycephalosporin C from fermentation broths of Penicillium chrysogenum transformants: construction of a new fungal biosynthetic pathway. Proc R Soc Lond Ser B 248: 283–289CrossRefGoogle Scholar
  38. Carr LG, Skatrud PL, Scheetz ME II, Queener SW, Ingolia TD (1986) Cloning and expression of the isopenicillin N synthetase gene from Penicillium chrysogenum. Gene 48: 257–266PubMedCrossRefGoogle Scholar
  39. Caruso ML, Litzka O, Martic G, Lottspeich F, Brakhage AA (2002) A novel basic-region helix-loop-helix transcription factor (AnBH1) of Aspergillus nidulans counteracts the CCAAT-binding complex AnCF in the promoter of a penicillin biosynthesis gene. J Mol Biol 323: 425–439Google Scholar
  40. Chiang TY, Marzluf GA (1994) DNA recognition by the NIT2 nitrogen regulatory protein: importance of the number, spacing, and orientation of GATA core elements and their flanking sequences upon NIT2 binding. Biochemistry 33: 576–582PubMedCrossRefGoogle Scholar
  41. Chu Y-W, Renno D, Saunders G (1995) Detection of a protein which binds specifically to the upstream region of the pcbAB gene in Penicillium chrysogenum. Curr Genet 27: 184–189CrossRefGoogle Scholar
  42. Clutterbuck PW, Lovell R, Raistrick R (1932) The formation from glucose by members of the Penicillium chrysogenum series of a pigment, an alkali-soluble protein and penicillin–the antibacterial substance of Fleming. Biochem J 26: 1907–1918PubMedGoogle Scholar
  43. Clutterbuck AJ (1993) Aspergillus nidulans,nuclear genes. In: O’Brien SJ (ed) Genetic maps, 6th edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 371384Google Scholar
  44. Cohen G, Shiffman D, Mevarech M, Aharonowitz Y (1990) Microbial isopenicillin N synthase genes: structure, function, diversity and evolution. Trends Biotechnol 8: 105–111Google Scholar
  45. Cohen G, Argaman A, Schreiber R, Mislovati M, Aharonowitz Y (1994) The thioredoxin system of Penicillium chrysogenum and its possible role in penicillin biosynthesis. J Bacteriol 176: 973–984PubMedGoogle Scholar
  46. Coque J-JR, Martin JF, Calzada JG, Liras P (1991) The cephamycin biosynthetic genes pcbAB, encoding a large multidomain peptide synthetase, and pcbC of Nocardia lactamdurans are clustered together in an organization different from the same genes in Acremonium chrysogenum and Penicillium chrysogenum. Mol Microbiol 5: 1125–1133PubMedCrossRefGoogle Scholar
  47. Coque J-JR, Liras P, Martin JF (1993) Genes for a 13lactamase, a penicillin-binding protein and a trans-membrane protein are clustered with the cephamycin biosynthetic genes in Nocardia lactamdurans. EMBO J 12: 631–639PubMedGoogle Scholar
  48. Cortes J, Martin JF, Castro JM, Laiz L, Liras P (1987) Purification and characterization of a 2-oxoglutarate-linked ATP-independent deacetoxycephalosporin C synthase of Streptomyces lactamdurans. J Gen Microbiol 133: 3165–3174PubMedGoogle Scholar
  49. Crawford L, Stepan AM, McAda PC, Rambosek JA, Conder MJ, Vinci VA, Reeves CD (1995) Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Biotechnology (NY) 13: 58–62CrossRefGoogle Scholar
  50. Demain AL (1957) Inhibition of penicillin formation by lysine. Arch Biochem Biophys 67: 244–245PubMedCrossRefGoogle Scholar
  51. Demain AL (1963) Synthesis of cephalosporin C by resting cells of Cephalosporium sp. Clin Med 70: 2045–2051PubMedGoogle Scholar
  52. Demain AL, Kennel YM, Aharonowitz Y (1979) Carbon catabolite regulation of secondary metabolism. In: Bull AT, Ellwood DC, Ratledge C (eds) Microbial technology: current state, future prospects, vol 29. Cambridge Univ Press, Cambridge, pp 163–185Google Scholar
  53. DeModena JA, Gutiérrez S, Velasco J, Fernandez FJ, Fachini RA, Galazzo JL, Hughes DE, Martin JF (1993) The production of cephalosporin C by Acremonium chrysogenum is improved by the intracellular expression of a bacterial hemoglobin. Biotechnology (NY) 11: 926–929CrossRefGoogle Scholar
  54. Diez BS, Gutierrez S, Barredo JL, van Solingen P, van der Voort LHM, Martin JF (1990) The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the a-amino adipylcysteinyl-valine synthetase and linkage to the pcbC and penDE genes. J Biol Chem 265: 16358–16365PubMedGoogle Scholar
  55. Diez E, Alvaro J, Espeso EA, Rainbow L, Suarez T, Tilburn J, Arst HN Jr, Penalva MA (2002) Activation of the Aspergillus PacC zinc finger transcription factor requires two proteolytic steps. EMBO J 21: 1350–1359PubMedCrossRefGoogle Scholar
  56. Dotzlaf JE, Yeh W-K (1987) Copurification and characterization of deacetoxycephalosporin C synthase/hydroxylase from Cephalosporium acremonium. J Bacteriol 169: 1611–1618PubMedGoogle Scholar
  57. Dotzlaf JE, Yeh W-K (1989) Purification and properties of deacetoxycephalosporin C synthase from recombinant Escherichia coli and its comparison with the native enzyme purified from Streptomyces clavuligerus. J Biol Chem 264: 10219–10227PubMedGoogle Scholar
  58. Emery P, Durand B, Mach B, Reith W (1996) RFX proteins, a novel family of DNA binding proteins conserved in the eukaryotic kingdom. Nucleic Acids Res 24: 803–807PubMedCrossRefGoogle Scholar
  59. Espeso EA, Penalva MA (1992) Carbon catabolite repression can account for the temporal pattern of expression of a penicillin biosynthetic gene in Aspergillus nidulans. Mol Microbiol 6: 1457–1465PubMedCrossRefGoogle Scholar
  60. Espeso EA, Penalva MA (1996) Three binding sites for the Aspergillus nidulans PacC zinc-finger transcription factor are necessary and sufficient for regulation by ambient pH of the isopenicillin N synthase gene promoter. J Biol Chem 271: 28825–28830Google Scholar
  61. Espeso EA, Tilburn J, Arst HN Jr, Penalva MA (1993) pH regulation is a major determinant in expression of a fungal biosynthetic gene. EMBO J 12: 3947–3956Google Scholar
  62. Espeso EA, Fernandez-Canon JM, Penalva MA (1995) Carbon regulation of penicillin biosynthesis in Aspergillus nidulans: a minor effect of mutations in creB and creC. FEMS Microbiol Lett 126: 63–68PubMedCrossRefGoogle Scholar
  63. Espeso EA, Roncal T, Diez E, Rainbow L, Bignell E, Alvaro J, Suarez T, Denison SH, Tilburn J, Arst HN Jr, Penalva MA (2000) On how a transcription factor can avoid its proteolytic activation in the absence of signal transduction. EMBO J 19:719–728; erratum: EMBO J 719: 2391Google Scholar
  64. Felix HR, Nüesch J, Wehrli W (1980) Investigation of the two final steps on the biosynthesis cephalosporin C using permeabilised cells of Cephalosporium acremonium. FEMS Microbiol Lett 8: 55–58CrossRefGoogle Scholar
  65. Feng B, Friedlin E, Marzluf GA (1994) A reporter gene analysis of penicillin biosynthesis gene expression in Penicillium chrysogenum and its regulation by nitrogen and glucose catabolite repression. Appl Environ Microbiol 60: 4432–4439PubMedGoogle Scholar
  66. Feng B, Friedlin E, Marzluf GA (1995) Nuclear DNA-binding proteins which recognize the intergenic control region of penicillin biosynthetic genes. Curr Genet 27: 351–358PubMedCrossRefGoogle Scholar
  67. Feng D-F, Cho G, Doolittle RF (1997) Determining divergence times with a protein clock: update and reevaluation. Proc Natl Acad Sci USA 94: 13028–13033PubMedCrossRefGoogle Scholar
  68. Fernandez-Canon JM, Penalva MA (1995) Overexpression of two penicillin structural genes in Aspergillus nidulans. Mol Gen Genet 246: 110–118PubMedCrossRefGoogle Scholar
  69. Fernandez-Canon JM, Reglero A, Martinez-Blanco H, Luengo JM (1989) I. Uptake of phenylacetic acid by Penicillium chrysogenum Wis54–1255: A critical regulatory point in benzylpenicillin biosynthesis. J Antibiot 42: 1389–1409Google Scholar
  70. Fierro F, Barredo JL, Diez B, Gutiérrez S, Fernandez FJ, Martin JF (1995) The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci USA 92: 6200–6204PubMedCrossRefGoogle Scholar
  71. Fierro F, Montenegro E, Gutiérrez S, Martin JF (1996) Mutants blocked in penicillin biosynthesis show a deletion of the entire penicillin gene cluster at a specific site within a conserved hexanucleotide sequence. Appl Microbiol Biotechnol 44: 597–604PubMedCrossRefGoogle Scholar
  72. Fleming A (1929) On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenza. Br J Exp Pathol 10: 226–236Google Scholar
  73. Fu YH, Marzluf GA (1990) nit-2, the major positive-acting nitrogen regulatory gene of Neurospora crassa, encodes a sequence-specific DNA-binding protein. Proc Natl Acad Sci USA 87: 5331–5335Google Scholar
  74. Fujisawa Y, Kanzaki T (1975) Role of acetyl-CoA:deacetylcephalosporin C acetyltransferase in cephalosporin C biosynthesis in Cephalosporium acremonium. Agric Biol Chem 39: 2043–2048CrossRefGoogle Scholar
  75. Gouka RJ, van Hartingsveldt W, Bovenberg RA, van Zeijl CM, van den Hondel CA, van Gorcom RF (1993) Development of a new transformant selection system for Penicillium chrysogenum: isolation and characterization of the P. chrysogenum acetyl-coenzyme A synthetase gene (facA) and its use as a homologous selection marker. Appl Microbiol Biotechnol 38: 514–519PubMedCrossRefGoogle Scholar
  76. Gould SJ, Keller G-A, Hosken N, Wilkinson J, Subramani S (1989) A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol 108: 1657–1664PubMedCrossRefGoogle Scholar
  77. Guarente L (1992) Messenger RNA transcription and its control in Saccharomyces cerevisiae. In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces cerevisiae, vol 2. Gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 49–98Google Scholar
  78. Gutiérrez S, Diez B, Montenegro E, Martin JF (1991) Characterization of the Cephalosporium acremonium pcbAB gene encoding a-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains. J Bacteriol 173: 2354–2365PubMedGoogle Scholar
  79. Gutiérrez S, Velasco J, Fernandez FJ, Martin JF (1992) The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetylcephalosporin C acetyltransferase closely related to homoserine O-acetyltransferase. J Bacteriol 174: 3056–3064Google Scholar
  80. Haas H, Marzluf GA (1995) NRE, the major nitrogen regulatory protein of Penicillium chrysogenum binds specifically to elements in the intergenic promoter regions of nitrate assimilation and penicillin biosynthetic gene clusters. Curr Genet 28: 177–183PubMedCrossRefGoogle Scholar
  81. Haas H, Bauer B, Redl B, Stöffler G, Marzluf GA (1995) Molecular cloning and analysis of nre, the major nitrogen regulatory gene of Penicillium chrysogenum. Curr Genet 27: 150–158PubMedCrossRefGoogle Scholar
  82. Heatley NG (1990) Early work at Oxford on penicillin. Biochemist 12: 4–7Google Scholar
  83. Hersbach GJM, van der Beek CP, van Dijck PWM (1984) The penicillins: Properties, biosynthesis and fermentation. In: Vandamme EJ (ed) Biotechnology of industrial antibiotics. Dekker, New York, pp 45–140Google Scholar
  84. Hicks JK, Yu JH, Keller NP, Adams TH (1997) Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G a protein-dependent signaling pathway. EMBO J 16: 4916–4923Google Scholar
  85. Hilgendorf P, Heiser V, Diekmann H, Thoma M (1987) Constant dissolved oxygen concentrations in cephalosporin C fermentation: applicability of different controllers and effect on fermentation parameters. Appl Microbiol Biotechnol 27: 247–251CrossRefGoogle Scholar
  86. Hillenga DJ, Versantvoort HJM, van der Molen S, Driessen AJM, Konings WN (1995) Penicillium chrysogenum takes up the penicillin G precursor phenylacetic acid by passive diffusion. Appl Environm Microbiol 61: 2589–2595Google Scholar
  87. Hollander IJ, Shen VQ, Heim J, Demain AL, Wolfe S (1984) A pure enzyme catalyzing penicillin biosynthesis. Science 224: 610–612PubMedCrossRefGoogle Scholar
  88. Hönlinger C, Kubicek CP (1989a) Metabolism and compartmentation of a-aminoadipic acid in penicillin-producing strains of Penicillium chrysogenum. Biochim Biophys Acta 993: 204–211CrossRefGoogle Scholar
  89. Hönlinger C, Kubicek CP (1989b) Regulation of ö-(L-aaminoadipyl)-L-cysteinyl-D-valine and isopenicillin N biosynthesis in Penicillium chrysogenum by the a-aminoadipate pool size. FEMS Microbiol Lett 65: 71–76Google Scholar
  90. Hynes MJ, Kelly J (1977) Pleiotropic mutants of Aspergillus nidulans altered in carbon source metabolism. Mol Gen Genet 150: 193–204PubMedCrossRefGoogle Scholar
  91. Ingolia TD, Queener SW (1989) 3-Lactam biosynthetic genes. Med Res Rev 9: 245–264Google Scholar
  92. Jayatilake S, Huddleston JA, Abraham EP (1981) Conversion of isopenicillin N into penicillin N in cell-free extracts of Cephalosporium acremonium. Biochem J 194: 645–647PubMedGoogle Scholar
  93. Jekosch K, Kück U (2000a) Glucose-dependent transcriptional expression of the crei gene in Acremonium chrysogenum strains showing different levels of cephalosporin C production. Curr Genet 37: 388395Google Scholar
  94. Jekosch K, Kück U (2000b) Loss of glucose repression in an Acremonium chrysogenum ß-lactam producer strain and its restoration by multiple copies of the crei gene. Appl Microbiol Biotechnol 54: 556–563PubMedCrossRefGoogle Scholar
  95. Jensen SE, Demain AL (1995) 13-Lactams. In: Vining LC, Stuttard C (eds) Genetics and biochemistry of antibiotic production. Butterworth-Heinemann, Newton, Mass, pp 239–268Google Scholar
  96. Jensen SE, Westlake DWS, Wolfe S (1983) Partial purification and characterization of isopenicillin N epimerase activity from Streptomyces clavuligerus. Can J Microbiol 29: 1526–1531PubMedCrossRefGoogle Scholar
  97. Jensen SE, Westlake DWS, Wolfe S (1985) Deacetoxycephalosporin C synthetase and deacetoxycephalosporin C hydroxylase are two separate enzymes in Streptomyces clavuligerus. J Antibiot (Tokyo) 38: 263–265CrossRefGoogle Scholar
  98. Jorgensen HS, Nielsen J, Villadsen J, Mollgaard H (1995) Metabolic flux distributions in Penicillium chrysogenum during fed-batch cultivations. Biotechnol Bioeng 46: 117–131PubMedCrossRefGoogle Scholar
  99. Kato M, Aoyama A, Naruse F, Kobayashi T, Tsukagoshi N (1997) An Aspergillus nidulans nuclear protein, AnCP, involved in enhancement of Taka-amylase A gene expression, binds to the CCAAT-containing taaG2, amdS, and gatA promoters. Mol Gen Genet 254: 119–126PubMedCrossRefGoogle Scholar
  100. Kato M, Aoyama A, Naruse F, Tateyama Y, Hayashi K, Miyazaki M, Papagiannopoulos P, Davis MA, Hynes MJ, Kobayashi T, Tsukagoshi N (1998) The Aspergillus nidulans CCAAT-binding factor, AnCP/AnCF, is a heteromeric protein analogous to the HAP complex of Saccharomyces cerevisiae. Mol Gen Genet 257: 404–411PubMedCrossRefGoogle Scholar
  101. Kato M, Naruse F, Kobayashi T, Tsukagoshi N (2001) No factors except for the hap complex increase the Takaamylase A gene expression by binding to the CCAAT sequence in the promoter region. Biosci Biotechnol Biochem 65: 2340–2342PubMedCrossRefGoogle Scholar
  102. Kennedy J, Turner G (1996) S-(L-a-Aminoadipyl)-L-cysteinyl-D-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillus nidulans. Mol Gen Genet 253: 189–197PubMedCrossRefGoogle Scholar
  103. Kimura H, Izawa M, Sumino Y (1996a) Molecular analysis of the gene cluster involved in cephalosporin biosynthesis from Lysobacter lactamgenus YK90. Appl Microbiol Biotechnol 44: 589–596PubMedCrossRefGoogle Scholar
  104. Kimura H, Miyashita H, Sumino Y (1996b) Organization and expression in Pseudomonas putida of the gene cluster involved in cephalosporin biosynthesis from Lysobacter lactamgenus YK90. Appl Microbiol Biotechnol 45: 490–501PubMedGoogle Scholar
  105. Kogekar R, Deshpande VD (1982) Biosynthesis of penicillin in vitro. Purification and properties of phenyl/ phenoxyacetic acid activating enzyme. Indian J Biochem Biophys 19: 257–261Google Scholar
  106. Kohsaka M, Demain AL (1976) Conversion of penicillin N to cephalosporin(s) by cell-free extracts of Cephalosporium acremonium. Biochem Biophys Res Commun 70: 465–473PubMedCrossRefGoogle Scholar
  107. Kolar M, Holzmann K, Weber G, Leitner E, Schwab H (1991) Molecular characterization and functional analysis in Aspergillus nidulans of the 5’-region of the Penicillium chrysogenum isopenicillin N synthetase gene. J Biotechnol 17: 67–80CrossRefGoogle Scholar
  108. Konomi T, Herchen S, Baldwin JE, Yoshida M, Hunt NA, Demain AL (1979) Cell-free conversion of S-(L-aaminoadipyl)-L-cysteinyl-D-valine into antibiotic with the properties of isopenicillin N in Cephalosporium acremonium. Biochem J 184: 427–430PubMedGoogle Scholar
  109. Kosalkova K, Marcos AT, Fierro F, Hernando-Rico V, Gutiérrez S, Martin JF (2000) A novel heptameric sequence (TTAGTAA) is the binding site for a protein required for high level expression of pcbAB, the first gene of the penicillin biosynthesis in Penicillium chrysogenum. J Biol Chem 275: 2423–2430PubMedCrossRefGoogle Scholar
  110. Kovacevic S, Miller JR (1991) Cloning and sequencing of the 13-lactam hydroxylase gene (cefx) from Streptomyces clavuligerus: gene duplication may have led to separate hydroxylase and expandase activities in the actinomycetes. J Bacteriol 173: 398–400PubMedGoogle Scholar
  111. Kovacevic S, Weigel BJ, Tobin MB, Ingolia TD, Miller JR (1989) Cloning, characterization, and expression in Escherichia coli of the Streptomyces clavuligerus gene encoding deacetoxycephalosporin C synthase. J Bacteriol 171: 754–760PubMedGoogle Scholar
  112. Kovacevic S, Tobin MB, Miller JR (1990) The 13-lactam biosynthesis genes for isopenicillin N epimerase and deacetoxycephalosporin C synthetase are expressed from a single transcript in Streptomyces clavuligerus. J Bacteriol 172: 3952–3958PubMedGoogle Scholar
  113. Kück U, Walz M, Mohr G, Mracek M (1989) The 5’-sequence of the isopenicillin N-synthetase gene (pcbC) from Cephalosporium acremonium directs the expression of the prokaryotic hygromycin B phosphotransferase gene (hph) in Aspergillus niger. Appl Microbiol Biotechnol 31: 358–365CrossRefGoogle Scholar
  114. Kudla B, Caddick MX, Langdon T, Martinez-Rossi NM, Benett CF, Silbey S, Davis RW, Arst HN Jr (1990) The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J 9: 1355–1364Google Scholar
  115. Kupka J, Shen Y-Q, Wolfe S, Demain AL (1983) Partial purification and properties of the a-ketoglutaratelinked ring expansion enzyme of (3-lactam biosynthesis. FEMS Microbiol Lett 16: 1–6Google Scholar
  116. Lancini G, Parenti F (1982) Antibiotics. An integrated view. Springer, Berlin Heidelberg New YorkGoogle Scholar
  117. Landan G, Cohen G, Aharonowitz Y, Shuali Y, Graur D, Shiffman D (1990) Evolution of isopenicillin N synthase genes may have involved horizontal gene transfer. Mol Biol Evol 7: 399–406Google Scholar
  118. Lazzarini A, Cavaletti L, Toppo G, Marinelli F (2000) Rare genera of actinomycetes as potential producers of new antibiotics. Antonie van Leeuwenhoek 78: 399–405PubMedCrossRefGoogle Scholar
  119. Lee HJ, Lloyd MD, Harlos K, Clifton IJ, Baldwin JE, Schofield CJ (2001) Kinetic and crystallographic studies on deacetoxycephalosporin C synthase ( DAOCS ). J Mol Biol 308: 937–948Google Scholar
  120. Lendenfeld T, Ghali D, Wolschek M, Kubicek-Pranz EM, Kubicek CP (1993) Subcellular compartmentation of penicillin biosynthesis in Penicillium chrysogenum. J Biol Chem 268: 665–671PubMedGoogle Scholar
  121. Li W-H, Luo C-C, Wu C-I (1985) Evolution of DNA sequences. In: Maclntyre (ed) Molecular evolutionary genetics. Plenum Press, New York, pp 1–94Google Scholar
  122. Lipscomb SJ, Lee HJ, Mukherji M, Baldwin JE, Schofield CJ, Lloyd MD (2002) The role of arginine residues in substrate binding and catalysis by deacetoxycephalosporin C synthase. Eur J Biochem 269: 2735–2739PubMedCrossRefGoogle Scholar
  123. Littlejohn TG, Hynes MJ (1992) Analysis of the site of action of the amdR product for regulation of the amdS gene of Aspergillus nidulans. Mol Gen Genet 235: 81–88PubMedCrossRefGoogle Scholar
  124. Litzka O, Then Bergh K, Brakhage AA (1995) Analysis of the regulation of Aspergillus nidulans penicillin biosynthesis gene aat (penDE) encoding acyl coenzyme A:6-aminopenicillanic acid acyltransferase. Mol Gen Genet 249: 557–569PubMedCrossRefGoogle Scholar
  125. Litzka O, Then Bergh K, Brakhage AA (1996) The Aspergillus nidulans penicillin biosynthesis gene aat (penDE) is controlled by a CCAAT containing DNA element. Eur J Biochem 238: 675–682PubMedCrossRefGoogle Scholar
  126. Litzka O, Papagiannopoulos P, Davis MA, Hynes MJ, Brakhage AA (1998) The penicillin regulator PENR1 of Aspergillus nidulans is a HAP-like transcriptional complex. Eur J Biochem 251: 758–767PubMedCrossRefGoogle Scholar
  127. Luengo JM (1995) Enzymatic synthesis of hydrophobic penicillins. J Antibiot (Tokyo) 648: 1195–1212Google Scholar
  128. MacCabe AP, Riach MBR, Unkles SE, Kinghorn JR (1990) The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis. EMBO J 9: 279–287Google Scholar
  129. MacCabe AP, van Liempt H, Palissa H, Unkles SE, Riach MBR, Pfeifer E, von Döhren H, Kinghorn JR (1991) S-(L-a-Aminoadipyl)-L-cysteinyl-D-valine synthetase from Aspergillus nidulans - molecular characterization of the acvA gene encoding the first enzyme of the penicillin biosynthetic pathway. J Biol Chem 266: 12646–12654PubMedGoogle Scholar
  130. MacCabe AP, van den Hombergh JPTW, Tilburn J, Arst HN Jr, Visser J (1996) Identification, cloning and analysis of the Aspergillus niger gene pacC, a wide domain regulatory gene responsive to ambient pH. Mol Gen Genet 250: 367–374PubMedGoogle Scholar
  131. Macdonald KD, Holt G (1976) Genetics of biosynthesis and overproduction of penicillin. Sci Prog 63: 547–573PubMedGoogle Scholar
  132. Malpartida F, Hopwood DA (1986) Physical and genetic characterization of the gene cluster for the antibiotic actinorhodin in Streptomyces coelicolor A3(2). Mol Gen Genet 205: 66–73PubMedCrossRefGoogle Scholar
  133. Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97: 2651–2673PubMedCrossRefGoogle Scholar
  134. Martin JF (2000) Molecular control of expression of penicillin biosynthesis genes in fungi: regulatory proteins interact with a bidirectional promoter region. J Bacteriol 182: 2355–2362PubMedCrossRefGoogle Scholar
  135. Martin JF, Liras P (1989) Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu Rev Microbiol 43: 173–206PubMedCrossRefGoogle Scholar
  136. Martin JF, Gutiérrez S, Demain AL (1997) 13-Lactams. In: Anke T (ed) Fungal biotechnology. Antibiotics. Chapman and Hall, Weinheim, pp 91–127Google Scholar
  137. Martin-Zanca DM, Martin JF (1983) Carbon catabolite regulation of the conversion of penicillin N into cephalosporin C. J Antibiot (Tokyo) 36: 700–708CrossRefGoogle Scholar
  138. Martinez-Blanco H, Reglero A, Fernandez-Valverde M, Ferrero MA, Moreno MA, Penalva MA, Luengo JM (1992) Isolation and characterization of the acetylCoA synthetase from Penicillium chrysogenum. Involvement of this enzyme in the biosynthesis of penicillins. J Biol Chem 267: 5474–5481Google Scholar
  139. Marzluf GA (1997) Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61: 17–32PubMedGoogle Scholar
  140. Mathison L, Soliday C, Stepan T, Aldrich T, Rambosek J (1993) Cloning, characterization, and use in strain improvement of the Cephalosporium acremonium gene cefG encoding acetyl transferase. Curr Genet 23: 33–41PubMedCrossRefGoogle Scholar
  141. Matsuda A, Sugiura H, Matsuyama K, Matsumoto H, Ichikawa S, Komatsu K-I (1992a) Cloning and disruption of the cefG gene encoding acetyl coenzyme A:deacetylcephalosporin C 0-acetyltransferase from Acremonium chrysogenum. Biochem Biophys Res Commun 186: 40–46PubMedCrossRefGoogle Scholar
  142. Matsuda A, Sugiura H, Matsuyama K, Matsumoto H, Ichikawa S, Komatsu K-I (1992b) Molecular cloning of acetyl coenzyme A:deacetylcephalosporin C Oacetyltransferase cDNA from Acremonium chrysogenum: Sequence and expression of catalytic activity in yeast. Biochem Biophys Res Commun 182: 9951001Google Scholar
  143. Matsumoto K (1993) Production of 6-APA, 7-ACA and 7ADCA by immobilised penicillin and cephalosporin amidases. In: Tanaka A, Tosa T, Kobayashi T (eds) Industrial application of immobilised biocatalysts. Dekker, New York, pp 67–88Google Scholar
  144. Matsumura M, Imanaka T, Yoshida T, Taguchi H (1978) Effect of glucose and methionine consumption rates on cephalosporin C production by Cephalosporium acremonium. J Ferment Technol 56: 345–353Google Scholar
  145. McNabb DS, Xing Y, Guarente L (1995) Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev 9: 47–58PubMedCrossRefGoogle Scholar
  146. Menne S, Walz M, Kück U (1994) Expression studies with the bidirectional pcbAB-pcbC promoter region from Acremonium chrysogenum using reporter gene fusions. Appl Microbiol Biotechnol 42: 57–66PubMedCrossRefGoogle Scholar
  147. Minambres B, Martinez-Blanco H, Olivera ER, Garcia B, Diez B, Barredo JL, Moreno MA, Schleissner C, Salto F, Luengo JM (1996) Molecular cloning and expression in different microbes of the DNA encoding Pseudomonas putida U phenylacetyl-CoA ligase. Use of this gene to improve the rate of benzylpenicillin biosynthesis in Penicillium chrysogenum. J Biol Chem 271: 33531–33538PubMedCrossRefGoogle Scholar
  148. Mingot JM, Penalva MA, Fernandez-Canon JM (1999) Disruption of phacA, an Aspergillus nidulans gene encoding a novel cytochrome P450 monooxygenase catalyzing phenylacetate 2-hydroxylation, results in penicillin overproduction. J Biol Chem 274: 14545–14550PubMedCrossRefGoogle Scholar
  149. Mingot JM, Espeso EA, Diez E, Penalva MA (2001) Ambient pH signaling regulates nuclear localization of the Aspergillus nidulans PacC transcription factor. Mol Cell Biol 21: 1688–1699PubMedCrossRefGoogle Scholar
  150. Montenegro E, Barredo JL, Gutierrez S, Diez B, Alvarez E, Martin JF (1990) Cloning, characterization of the acyl-CoA:6-amino penicillanic acid acyltransferase gene of Aspergillus nidulans and linkage to the isopenicillin N synthase gene. Mol Gen Genet 221: 322–330Google Scholar
  151. Mootz HD, Marahiel MA (1999) Design and application of multimodular peptide synthetases. Curr Opin Biotechnol 10: 341–348PubMedCrossRefGoogle Scholar
  152. Müller WH, van der Krift TP, Krouwer AJJ, Wösten HAB, van der Voort LHM, Smaal EB, Verkleij AJ (1991) Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. EMBO J 10: 489–495PubMedGoogle Scholar
  153. Müller WH, Bovenberg RAL, Groothuis MH, Kattevilder F, Smaal EB, van der Voort LHM, Verkleij AJ (1992) Involvement of microbodies in penicillin biosynthesis. Biochim Biophys Acta 1116: 210–213PubMedCrossRefGoogle Scholar
  154. Nagata O, Takashima T, Tanaka M, Tsukagoshi N (1993) Aspergillus nidulans nuclear proteins bind to a CCAAT element and the adjacent upstream sequence in the promoter region of the starch-inducible Taka-amylase A gene. Mol Gen Genet 237: 251–260Google Scholar
  155. Newbert RW, Barton B, Greaves P, Harper J, Turner G (1997) Analysis of a commercially improved Penicillium chrysogenum strain series: Involvement of recombinogenic regions in amplification and deletion of the penicillin biosynthesis gene cluster. J Ind Microbiol Biotechnol 19: 18–27Google Scholar
  156. Nielsen J (1995) Physiological engineering aspects of Peni- cillium chrysogenum. Polyteknisk Forlag, DenmarkGoogle Scholar
  157. Nüesch J, Heim J, Treichler H-J (1987) The biosynthesis of sulfur-containing (3-lactam antibiotics. Annu Rev Microbiol 41: 51–75PubMedCrossRefGoogle Scholar
  158. Orejas M, Espeso EA, Tilburn J, Sarkar S, Arst HN Jr, Penalva MA (1995) Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Genes Dev 9: 1622–1632PubMedCrossRefGoogle Scholar
  159. Pang CP, Chakravarti B, Adlington RM, Ting H-H, White RL, Jayatilake GS, Baldwin JE, Abraham EP (1984) Purification of isopenicillin N synthetase. Biochem J 222: 789–795Google Scholar
  160. Papagiannopoulos P, Adrianopoulos A, Sharp JA, Davis MA, Hynes MJ (1996) The hapC gene of Aspergillus nidulans is involved in the expression of CCAATcontaining promoters. Mol Gen Genet 251: 412–421PubMedGoogle Scholar
  161. Penalva MA, Vian A, Patino C, Perez-Aranda A, Ramon D (1989) Molecular biology of penicillin production in Aspergillus nidulans. In: Hershberger CL, Queener SW, Hegeman G (eds) Genetics and molecular biology of industrial microorganisms. American Society for Microbiology, Washington, DC, pp 256–261Google Scholar
  162. Penalva MA, Moya A, Dopazo J, Ramon D (1990) Sequences of isopenicillin N synthetase genes suggest horizontal gene transfer from prokaryotes to eukaryotes. Proc R Soc Lond B Biol Sci 241: 164–169CrossRefGoogle Scholar
  163. Pérez-Esteban B, Orejas M, Gómez-Pardo E, Penalva MA (1993) Molecular characterization of a fungal secondary metabolism promoter: transcription of the Aspergillus nidulans isopenicillin N synthetase gene is modulated by upstream negative elements. Mol Microbiol 9: 881–895Google Scholar
  164. Pérez-Esteban B, Gómez-Pardo E, Penalva MA (1995) A lacZ reporter fusion method for the genetic analysis of regulatory mutations in pathways of fungal secondary metabolism and its application to the Aspergillus nidulans penicillin pathway. J Bacteriol 177: 6069–6076PubMedGoogle Scholar
  165. Perry D, Abraham EP, Baldwin JE (1988) Factors affecting the isopenicillin N synthetase reaction. Biochem J 255: 345–351Google Scholar
  166. Pontecorvo G, Roper JA, Hemmons LM, MacDonald KD, Bufton AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet 5: 141–238PubMedCrossRefGoogle Scholar
  167. Queener SW (1990) Molecular biology of penicillin and cephalosporin biosynthesis. Antimicrob Agents Chemother 34: 943–948PubMedCrossRefGoogle Scholar
  168. Queener SW, Neuss N (1982) Biosynthesis of (3-lactam antibiotics. In: Morin RB, Gorman M (eds) Chemistry and biology of 13-lactam antibiotics, vol 3. Academic Press, London, pp 1–81Google Scholar
  169. Ramon D, Carramolino L, Patino C, Sanchez F, Penalva MA (1987) Cloning and characterization of the isopenicillin N synthetase gene mediating the formation of the (3-lactam ring in Aspergillus nidulans. Gene 57: 171–181PubMedCrossRefGoogle Scholar
  170. Renno DV, Saunders G, Bull AT, Holt G (1992) Transcript analysis of penicillin genes from Penicillium chrysogenum. Curr Genet 21: 49–54PubMedCrossRefGoogle Scholar
  171. Revilla G, Lopez-Nieto MJ, Luengo JM, Martin JF (1984) Carbon catabolite repression of penicillin biosynthesis by Penicillium chrysogenum. J Antibiot (Tokyo) 37: 781–789CrossRefGoogle Scholar
  172. Revilla G, Ramos FR, Lopez-Nieto MJ, Alvarez E, Martin JF (1986) Glucose represses formation of ö-(L-a-Aminoadipyl)-L-cysteinyl-D-valine and isopenicillin N synthase, but not penicillin acyltransferase in Penicillium chrysogenum. J Bacteriol 168: 947–952PubMedGoogle Scholar
  173. Richardson IB, Katz ME, Hynes MJ (1992) Molecular characterization of the lam locus and sequences involved in the regulation of the AmdR protein of Aspergillus nidulans. Mol Cell Biol 12: 337–346PubMedGoogle Scholar
  174. Roach PL, Clifton IJ, Fülöp V, Harlos K, Barton GJ, Hajdu J, Andersson I, Schofield CJ, Baldwin JE (1995) Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature 375: 700–704Google Scholar
  175. Roach PL, Clifton IJ, Hensgens CMH, Shibata N, Schofield CJ, Hajdu J, Baldwin JE (1997) Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature 387: 827–830Google Scholar
  176. Rodriguez-Saiz M, Barredo JL, Moreno MA, FernândezCanón JM, Penalva MA, Diez B (2001) Reduced function of a phenylacetate-oxidizing cytochrome P450 caused strong genetic improvement in early phylogeny of penicillin-producing strains. Bacteriol 183: 5465–5471CrossRefGoogle Scholar
  177. Rossi A, Arst HN Jr (1990) Mutants of Aspergillus nidulans able to grow at extremely acidic pH acidify the medium less than wild type when grown at more moderate pH. FEMS Microbiol Lett 66: 51–53CrossRefGoogle Scholar
  178. Samson SM, Belagaje R, Blankenship DT, Chapman JL, Perry D, Skatrud PL, van Frank RM, Abraham EP, Baldwin JE, Queener SW, Ingolia TD (1985) Isolation, sequence determination and expression in Escherichia coli of the isopenicillin N synthetase gene from Cephalosporium acremonium. Nature 318: 191–194PubMedCrossRefGoogle Scholar
  179. Samson SM, Dotzlaf JE, Slisz ML, Becker GW, van Frank RM, Veal LE, Yeh W-K, Miller JR, Queener SW, Ingolia TD (1987) Cloning and expression of the fungal expandase/hydroxylase gene involved in cephalosporin biosynthesis. Biotechnology (NY) 5: 1207–1214CrossRefGoogle Scholar
  180. Sanchez S, Flores ME, Demain AL (1988) Nitrogen regulation of penicillin and cephalosporin fermentations. In: Sanchez-Esquival S (ed) Nitrogen source control of microbial processes. CRC Press, Boca Raton, pp 121–136Google Scholar
  181. Scheidegger A, Küenzi MT, Nüesch J (1984) Partial purification and catalytic properties of a bifunctional enzyme in the biosynthetic pathway of 3-lactams in Cephalosporium acremonium. J Antibiot (Tokyo) 37: 522–531CrossRefGoogle Scholar
  182. Schlumbohm W, Stein T, Ullrich C, Vater J, Krause M, Marahiel MA, Kruft V, Wittmann-Liebold B (1991) An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase. J Biol Chem 266: 23135–23141PubMedGoogle Scholar
  183. Schmitt EK, Kück U (2000) The fungal CPCR1 protein, which binds specifically to (3-lactam biosynthesis genes, is related to human regulatory factor X transcription factors. J Biol Chem 275: 9348–9357PubMedCrossRefGoogle Scholar
  184. Schmitt EK, Kempken R, Kück U (2001) Functional analysis of promoter sequences of cephalosporin C biosynthesis genes from Acremonium chrysogenum: specific DNA-protein interactions and characterization of the transcription factor PACC. Mol Genet Genom 265: 508–518CrossRefGoogle Scholar
  185. Schwecke T, Aharonowitz Y, Palissa H, von Döhren H, Kleinkauf H, van Liempt H (1992) Enzymatic characterisation of the multifunctional enzyme ö-(L-aaminoadipyl)-L-cysteinyl-D-valine synthetase from Streptomyces clavuligerus. Eur J Biochem 205: 687–694PubMedCrossRefGoogle Scholar
  186. Seno ET, Baltz RH (1989) Structural organization and regulation of antibiotic biosynthesis and resistance genes in Actinomycetes. In: Shapiro S (ed) Regulation of secondary metabolism in Actinomycetes. CRC Press, Boca Raton, pp 1–48Google Scholar
  187. Shah AJ, Tilburn J, Adlard MW, Arst HN Jr (1991) pH regulation of penicillin production in Aspergillus nidulans. FEMS Microbiol Lett 77: 209–212Google Scholar
  188. Shen Y-Q, Heim J, Solomon NA, Wolfe S, Demain AL (1984) Repression of P-lactam production in Cephalosporium acremonium by nitrogen sources. J Antibiot (Tokyo) 37: 503–511CrossRefGoogle Scholar
  189. Skatrud PL (1991) Molecular biology of the 13-lactamproducing fungi. In: Bennett JW, Lasure LL (eds) More gene manipulations in fungi. Academic Press, New York, pp 364–395CrossRefGoogle Scholar
  190. Skatrud PL, Queener SW (1989) An electrophoretic molecular karyotype for an industrial strain of Cephalosporium acremonium. Gene 79: 331–338CrossRefGoogle Scholar
  191. Skatrud PL, Tietz AJ, Ingolia TD, Cantwell CA, Fisher DL, Chapman JL, Queener SW (1989) Use of recombinant DNA to improve production of cephalosporin C by Cephalosporium acremonium. Biotechnology (NY) 7: 477–485CrossRefGoogle Scholar
  192. Smith DJ, Bull JH, Edwards J, Turner G (1989) Amplification of the isopenicillin N synthetase gene in a strain of Penicillium chrysogenum producing high levels of penicillin. Mol Gen Genet 216: 492–497PubMedCrossRefGoogle Scholar
  193. Smith DJ, Burnham MRK, Bull JH, Hodgson JE, Ward JM, Browne P, Brown J, Barton B, Earl AJ, Turner G (1990a) ß-Lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes. EMBO J 9: 741–747PubMedGoogle Scholar
  194. Smith DJ, Earl AJ, Turner G (1990b) The multifunctional peptide synthetase performing the first step of penicillin biosynthesis is a 421,073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases. EMBO J 9: 2743–2750PubMedGoogle Scholar
  195. Smith MW, Feng D-F, Doolittle RF (1992) Evolution by acquisition: the case for horizontal gene transfers. Trends Biochem Sci 17: 489–493PubMedCrossRefGoogle Scholar
  196. Soltero FV, Johnson MJ (1952) The effect of the carbohydrate nutrition on penicillin production by Penicillium chrysogenum Q-176. Appl Microbiol 1: 52–57Google Scholar
  197. Steidl S, Papagiannopoulos P, Litzka O, Andrianopoulos A, Davis MA, Brakhage AA, Hynes MJ (1999) AnCF, the CCAAT binding complex of Aspergillus nidulans, contains products of the hapB, hapC and hapE genes and is required for activation by the pathway-specific regulatory gene amdR. Mol Cell Biol 19: 99–106PubMedGoogle Scholar
  198. Steidl S, Hynes MJ, Brakhage AA (2001) The Aspergillus nidulans multimeric CCAAT binding complex AnCf is negatively autoregulated via its hapB subunit gene. J Mol Biol 306: 643–653PubMedCrossRefGoogle Scholar
  199. Stein T, Vater J, Kruft V, Wittmann-Liebold B, Franke P, Panico M, McDowell R, Morris HR (1994) Detection of 4’-phosphopantetheine at the thioester binding site for L-valine of gramicidin S synthetase 2. FEBS Lett 340: 39–44PubMedCrossRefGoogle Scholar
  200. Stein T, Vater J, Kruft V, Otto A, Wittmann-Liebold B, Franke P, Panico M, McDowell R, Morris HR (1996) The multiple carrier model of nonribosomal peptide biosynthesis at modular multienzymatic templates. J Biol Chem 271: 15428–15435PubMedCrossRefGoogle Scholar
  201. Suarez T, Penalva MA (1996) Characterisation of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB-pcbC promoter of the penicillin biosynthetic cluster. Mol Microbiol 20: 529–540PubMedCrossRefGoogle Scholar
  202. Swartz RW (1985) Penicillins. In: Blanch HW, Drew S, Wang DIC (eds) Comprehensive biotechnology. The principles, applications and regulations of biotechnology in industry, agriculture and medicine, vol 3. The practice of biotechnology: current commodity products. Pergamon Press, Oxford, pp 7–47Google Scholar
  203. Tag A, Hicks J, Garifullina G, Ake C Jr, Phillips TD, Beremand M, Keller N (2000) G-protein signalling mediates differential production of toxic secondary metabolites. Mol Microbiol 38: 658–665PubMedCrossRefGoogle Scholar
  204. Theilgaard HB, Kristiansen KN, Henriksen CM, Nielsen J (1997) Purification and characterization of S-(L-a-aminoadipyl)-L-cysteinyl-D-valine synthetase from Penicillium chrysogenum. Biochem J 327: 185–191PubMedGoogle Scholar
  205. Theilgaard HB, van Den Berg M, Mulder C, Bovenberg R, Nielsen J (2001) Quantitative analysis of Penicillium chrysogenum Wis54–1255 transformants overexpressing the penicillin biosynthetic genes. Biotechnol Bioeng 72: 379–388PubMedCrossRefGoogle Scholar
  206. Then Bergh K, Brakhage AA (1998) Regulation of the Aspergillus nidulans penicillin biosynthesis gene acvA (pcbAB) by amino acids: implication for involvement of transcription factor PACC. Appl Environ Microbiol 64: 843–849Google Scholar
  207. Then Bergh K, Litzka O, Brakhage AA (1996) Identification of a major cis-acting DNA element controlling the bidirectionally transcribed penicillin biosynthesis genes acvA (pcbAB) and ipnA (pcbC) of Aspergillus nidulans. J Bacteriol 178: 3908–3916PubMedGoogle Scholar
  208. Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Penalva MA, Arst HN Jr (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acidic-and alkaline-expressed genes by ambient pH. EMBO J 14: 779–790PubMedGoogle Scholar
  209. Tobin MB, Fleming MD, Skatrud PL, Miller JR (1990) Molecular characterization of the acyl-coenzyme A:isopenicillin N acyltransferase gene (penDE) from Penicillium chrysogenum and Aspergillus nidulans and activity of recombinant enzyme in Escherichia coli. J Bacteriol 172: 5908–5914PubMedGoogle Scholar
  210. Tobin MB, Baldwin JE, Cole SCJ, Miller JR, Skatrud PL, Sutherland JD (1993) The requirement for subunit interaction in the production of Penicillium chrysogenum acyl-coenzyme A:isopenicillin N acyltransferase in Escherichia coli. Gene 132: 199–206PubMedCrossRefGoogle Scholar
  211. Tobin MB, Cole SCJ, Miller JR, Baldwin JE, Sutherland JD (1995) Amino-acid substitutions in the cleavage site of acyl-coenzyme A:isopenicillin N acyltransferase from Penicillium chrysogenum: effect on proenzyme cleavage and activity. Gene 162: 29–35PubMedCrossRefGoogle Scholar
  212. Turgay K, Krause M, Marahiel MA (1992) Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate-forming enzymes. Mol Microbiol 6: 529–546PubMedCrossRefGoogle Scholar
  213. Turner G, Browne PE, Brakhage AA (1993) Expression of genes for the biosynthesis of penicillin. In: Maresca B, Kobayashi GS, Yamaguchi H (eds) Molecular Biology and its applications to medical mycology. NATO ASI Series H Cell Biol, vol 69. Springer, Berlin Heidelberg New York, pp 125–138CrossRefGoogle Scholar
  214. Ullan RV, Liu G, Casqueiro J, Gutiérrez S, Banuelos O, Martin JF (2002) The ceff gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Mol Genet Genom 267: 673–683CrossRefGoogle Scholar
  215. Van de Kamp M, Driessen AJ, Konings WN (1999) Compartmentalization and transport in (3-lactam antibiotic biosynthesis by filamentous fungi. Antonie van Leeuwenhoel 75: 41–78CrossRefGoogle Scholar
  216. Van den Brulle J, Steidl S, Brakhage AA (1999) Cloning and characterization of an Aspergillus nidulans gene involved in the regulation of penicillin biosynthesis. Appl Environ Microbiol 65: 5222–5228Google Scholar
  217. Van der Lende TR, van de Kamp M, van den Berg M, Sjollema K, Bovenberg RAL, Veenhuis M, Konings WN, Driessen AJM (2002) S-(L-a-Aminoadipyl)-Lcysteinyl-D-valine synthetase that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme. Fungal Genet Biol 37: 49–55PubMedCrossRefGoogle Scholar
  218. Van Heeswijck R, Hynes MJ (1991) The amdR product and a CCAAT-binding factor bind to adjacent, possibly overlapping DNA sequences in the promoter region of the Aspergillus nidulans amdS gene. Nucleic Acids Res 19: 2655–2660PubMedCrossRefGoogle Scholar
  219. Van Liempt H, von Döhren H, Kleinkauf H (1989) S-(L-aAminoadipyl)-L-cysteinyl-D-valine synthetase from Aspergillus nidulans. J Biol Chem 264: 3680–3684PubMedGoogle Scholar
  220. Veenstra AE, van Solingen P, Bovenberg RAL, van der Voort LHM (1991) Strain improvement of Penicillium chrysogenum by recombinant DNA techniques. J Biotechnol 17: 81–90PubMedCrossRefGoogle Scholar
  221. Velasco J, Gutiérrez S, Fernandez FJ, Marcos AT, Arenos C, Martin JF (1994) Exogenous methionine increases levels of mRNAs transcribed from pcbAB, pcbC, and cefEF genes, encoding enzymes of the cephalosporin biosynthetic pathway, in Acremonium chrysogenum. J Bacteriol 176: 985–991Google Scholar
  222. Velasco J, Gutiérrez S, Campoy S, Martin JF (1999) Molecular characterization of the Acremonium chrysogenum cefG gene product: the native deacetylcephalosporin C acetyltransferase is not processed into subunits. Biochem J 337: 379–385PubMedCrossRefGoogle Scholar
  223. Velaso J, Luis Adrio J, Angel Moreno M, Diez B, Soler G, Barredo JL (2000) Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA) using recombinant strains of Acremonium chrysogenum. Nat Biotechnol 18: 857–861CrossRefGoogle Scholar
  224. Von Döhren H, Keller U, Vater J, Zocher R (1997) Multifunctional peptide synthetases. Chem Rev 97: 2675–2705CrossRefGoogle Scholar
  225. Weidner G, Steidl S, Brakhage AA (2001) The Aspergillus nidulans homoaconitase gene lysF is negatively regulated by the multimeric CCAAT-binding complex AnCF and positively regulated by GATA sites. Arch Microbiol 175: 122–132PubMedCrossRefGoogle Scholar
  226. Weigel BJ, Burgett SG, Chen VJ, Skatrud PL, Frolik CA, Queener SW, Ingolia TD (1988) Cloning and expression in Escherichia coli of isopenicillin N synthetase genes from Streptomyces lipmanii and Aspergillus nidulans. J Bacteriol 170: 3817–3826PubMedGoogle Scholar
  227. Whiteman PA, Abraham EP, Baldwin JE, Fleming MD, Schofield CJ, Sutherland JD, Willis AC (1990) Acyl coenzyme A:6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum and Aspergillus nidulans. FEBS Lett 262: 342–344PubMedCrossRefGoogle Scholar
  228. Wolfe S, Demain AL, Jensen SE, Westlake DWS (1984) Enzymatic approach to synthesis of unnatural 3-lactams. Science 226: 1386–1392PubMedCrossRefGoogle Scholar
  229. Zhang J, Demain AL (1992a) ACV synthetase. Crit Rev Biotechnol 12: 245–260CrossRefGoogle Scholar
  230. Zhang J, Demain AL (1992b) Regulation of ACV synthetase activity by carbon sources and their metabolites. Arch Microbiol 158: 364–369CrossRefGoogle Scholar
  231. Zhang J, Wolfe S, Demain AL (1989) Carbon source regulation of the ACV synthetase in Cephalosporium acremonium C-10. Curr Microbiol 18: 361–367CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • A. A. Brakhage
    • 1
  • M. L. Caruso
  1. 1.Institut für MikrobiologieUniversität HannoverHannoverGermany

Personalised recommendations