Skip to main content

RNA Viruses and Killer Genetics of Saccharomyces

  • Chapter
Genetics and Biotechnology

Part of the book series: The Mycota ((MYCOTA,volume 2))

  • 986 Accesses

Abstract

The yeast Saccharomyces cerevisiae harbors two families of dsRNA viruses (L-A and its satellites, and L-BC), two ssRNA replicons (20S RNA and 23S RNA) and five retrovirus-like elements (Tyl,..., Ty5), referred to as retrotransposons (for previous reviews, see Boeke and Sandmeyer 1991; Esteban et al. 1993; Wickner 2001). Most strains carry all of these elements in spite of the fact that none are known to have a natural extracellular route of infection. This may be a reflection of the fact that Saccharomyces,like many other fungi, mate frequently in nature so these viruses become widely distributed. S. cerevisiae has also been used as a host for plant and insect viruses, in order to utilize its well-developed genetic system (Janda and Ahlquist 1993; Price et al. 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed A, Sesti F, Ilan N, Shih TM, Sturley SL, Goldstein SAN (1999) A molecular target for the viral killer toxin: TOK1 potassium channels. Cell 99: 283–291

    Article  PubMed  CAS  Google Scholar 

  • Araki Y, Takahashi S, Kobayashi T, Kajiho H, Hoshino S, Katada T (2001) Ski7p G protein interacts with the exosome and the Ski complex for 3’ to 5’ mRNA decay in yeast. EMBO J 20: 4684–4693

    Article  PubMed  CAS  Google Scholar 

  • Benard L, Carroll K, Valle RCP, Wickner RB (1998) Skióp is a homolog of RNA-processing enzymes that affects translation of non-poly(A) mRNAs and 60S ribosomal subunit biogenesis. Mol Cell Biol 18: 2688–2696

    PubMed  CAS  Google Scholar 

  • Benard L, Carroll K, Valle RCP, Wickner RB (1999) The Ski7 antiviral protein is an EF1-a homolog that blocks expression of non-poly(A) mRNA in Saccharomyces cerevisiae. J Virol 73: 2893–2900

    PubMed  CAS  Google Scholar 

  • Blanc A, Goyer C, Sonenberg N (1992) The coat protein of the yeast double-stranded RNA virus L-A attaches covalently to the cap structure of eukaryotic mRNA. Mol Cell Biol 12: 3390–3398

    PubMed  CAS  Google Scholar 

  • Blanc A, Ribas JC, Wickner RB, Sonenberg N (1994) His154 is involved in the linkage of the Saccharomyces cerevisiae L-A double-stranded RNA virus gag protein to the cap structure of mRNAs and is essential for M, satellite virus expression. Mol Cell Biol 14: 2664–2674

    Article  PubMed  CAS  Google Scholar 

  • Boeke JD, Sandmeyer SB (1991) Yeast transposable elements. In: Broach JR, Pringle JR, Jones EW (eds) The molecular and cellular biology of the yeast Saccharomyces cerevisiae: genome dynamics, protein synthesis and energetics. Cold Spring Harbor Laboratory Press, Plainview, NY, pp 193–261

    Google Scholar 

  • Boone C, Bussey H, Greene D, Thomas DY, Vernet T (1986) Yeast killer toxin: site-directed mutations implicate the precursor protein as the immunity component. Cell 46: 105–113

    Article  PubMed  CAS  Google Scholar 

  • Boone C, Sommer SS, Hensel A, Bussey H (1990) Yeast KRE genes provide evidence for a pathway of cell wall betaglucan assembly. J Cell Biol 110: 1833–1843

    Article  PubMed  CAS  Google Scholar 

  • Bostian KA, Elliott Q, Bussey H, Burn V, Smith A, Tipper DJ (1984) Sequence of the preprotoxin dsRNA gene of type I killer yeast: multiple processing events produce a two-component toxin. Cell 36: 741–751

    Article  PubMed  CAS  Google Scholar 

  • Bozarth RF, Koltin Y, Weissman MB, Parker RL, Dalton RE, Steinlauf R (1981) The molecular weight and packaging of dsRNAs in the mycovirus from Ustilago maydis killer strains. Virology 113: 492–502

    Article  PubMed  CAS  Google Scholar 

  • Breinig F, Tipper DJ, Schmitt MJ (2002) Krelp, the plasma membrane receptor for the yeast K, viral toxin. Cell 108: 395–405

    Article  PubMed  CAS  Google Scholar 

  • Brown JT, Bai X, Johnson AW (2000) The yeast antiviral proteins Ski2p, Ski3p and Ski8p exist as a complex in vivo. RNA 6: 449–457

    Google Scholar 

  • Bruenn JA (1980) Virus-like particles of yeast. Annu Rev Microbiol 34: 49–68

    Article  PubMed  CAS  Google Scholar 

  • Buck KW (1979) Replication of double-stranded RNA mycoviruses. In: Lemke PA (ed) Viruses and plasmids in Fungi. Dekker, New York, pp 93–160

    Google Scholar 

  • Buck KW, Lhoas P, Street BK (1973) Virus particles in yeast. Biochem Soc Trans 1: 1141–1142

    CAS  Google Scholar 

  • Bussey H (1988) Proteases and the processing of precur- sors to secreted proteins in yeast. Yeast 4: 17–26

    Article  PubMed  CAS  Google Scholar 

  • Bussey H, Saville D, Greene D, Tipper DJ, Bostian KA (1983) Secretion of Saccharomyces cerevisiae killer toxin: processing of the glycosylated precursor. Mol Cell Biol 3: 1362–1370

    PubMed  CAS  Google Scholar 

  • Bussey H, Boone C, Zhu H, Vernet T, Whiteway M, Thomas DY (1990) Genetic and molecular approaches to synthesis and action of the yeast killer toxin. Experientia 46: 193–200

    Article  PubMed  CAS  Google Scholar 

  • Butcher SJ, Dokland T, Ojala PM, Bamford DH, Fuller SD (1997) Intermediates in the assembly pathway of the double-stranded RNA virus phi6. EMBO J 16: 4477–4487

    Article  PubMed  CAS  Google Scholar 

  • Cabib E, Roh DH, Schmidt M, Crotti LB, Varma A (2001) The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J Biol Chem 276: 1967919682

    Google Scholar 

  • Carroll K, Wickner RB (1995) Translation and M, dsRNA propagation: MAK18 = RPL41B and cycloheximide curing. J Bacteriol 177: 2887–2891

    PubMed  CAS  Google Scholar 

  • Caston JR, Trus BL, Booy FP, Wickner RB, Wall JS, Steven AC (1997) Structure of L-A virus: a specialized cornpartment for the transcription and replication of double-stranded RNA. J Cell Biol 138: 975–985

    Article  PubMed  CAS  Google Scholar 

  • Cheng RH, Caston JR, Wang G-J, Gu F, Smith TJ, Baker TS, Bozarth RF, Trus BL, Cheng N, Wickner RB, Steven AC (1994) Fungal virus capsids are cytoplasmic compartments for the replication of double-stranded RNA formed as icosahedral shells of assymetric Gag dimers. J Mol Biol 244: 255–258

    Article  PubMed  CAS  Google Scholar 

  • Cooper A, Bussey H (1989) Characterization of the yeast KEX1 gene product: a carboxypeptidase involved in processing secreted precursor proteins. Mol Cell Biol 9: 2706–2714

    PubMed  CAS  Google Scholar 

  • Cooper A, Bussey H (1992) Yeast Kexlp is a Golgi-associated membrane protein: deletions in a cytoplasmic targeting domain result in mislocalization to the vacuolar membrane. J Cell Biol 119: 1459–1468

    Article  PubMed  CAS  Google Scholar 

  • De la Pena PF, Barros F, Gascon S, Ramos S, Lazo P (1980) Primary effects of yeast killer toxin. Biochem Biophys Res Commun 96: 544–550

    Article  PubMed  Google Scholar 

  • De la Pena P, Barros F, Gascon S, Lazo PS, Ramos S (1981) Effect of yeast killer toxin on sensitive cells of Saccharomyces cerevisiae. J Biol Chem 256: 10420–10425

    PubMed  Google Scholar 

  • Dignard D,Whiteway M, Germain D, Tessier D, Thomas DY (1991) Expression in yeast of a cDNA copy of the K2 killer toxin gene. Mol Gen Genet 227: 127–136

    Article  Google Scholar 

  • Dihanich M, van Tuinen E, Lambris JD, Marshallsay B (1989) Accumulation of viruslike particles in a yeast mutant lacking a mitochondrial pore protein. Mol Cell Biol 9: 1100–1108

    PubMed  CAS  Google Scholar 

  • Dinman JD, Wickner RB (1992) Ribosomal frameshifting efficiency and gag/gag-pol ratio are critical for yeast M, double-stranded RNA virus propagation. J Virol 66: 3669–3676

    PubMed  CAS  Google Scholar 

  • Dinman JD, Wickner RB (1994) Translational maintenance of frame: mutants of Saccharomyces cerevisiae with altered -1 ribosomal frameshifting efficiencies. Genetics 136: 75–86

    PubMed  CAS  Google Scholar 

  • Dinman JD, Wickner RB (1995) 5S rRNA is involved in fidelity of translational reading frame. Genetics 141: 95–105

    Google Scholar 

  • Dinman JD, Icho T, Wickner RB (1991) A -1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein. Proc Natl Acad Sci USA 88: 174–178

    Article  PubMed  CAS  Google Scholar 

  • Dinman JD, Ruiz-Echevarria MJ, Czaplinski K, Peltz SW (1997) Peptidyl-transferase inhibitors have antiviral properties by altering programmed -1 ribosomal frameshifting efficiencies: development of model systems. Proc Natl Acad Sci USA 94: 6606–6611

    Article  PubMed  CAS  Google Scholar 

  • Dinman JD, Ruiz-Echevarria MJ, Peltz SW (1998) Translating old drugs into new treatments: ribosomal frame-shifting as a target for antiviral agents. Trends Biotech 16: 190–196

    Article  CAS  Google Scholar 

  • Dmochowska A, Dignard D, Henning D, Thomas DY, Bussey H (1987) Yeast KEX1 gene encodes a putative protease with a carboxypeptidase B-like function involved in killer toxin and alpha factor precursor processing. Cell 50: 573–584

    Article  PubMed  CAS  Google Scholar 

  • Edskes HK, Ohtake Y, Wickner RB (1998) Mak2lp of Saccharomyces cerevisiae, a homolog of human CAATT binding protein, is essential for 60S ribosomal subunit biogenesis. J Biol Chem 273: 28912–28920

    Article  PubMed  CAS  Google Scholar 

  • Eisfeld K, Riffer F, Mentges J, Schmitt MJ (2000) Endocytotic uptake and retrograde transport of a virally encoded killer toxin in yeast. Mol Microbiol 37: 926–940

    Article  PubMed  CAS  Google Scholar 

  • Esteban R, Wickner RB (1986) Three different Ml RNA-containing viruslike particle types in Saccharomyces cerevisiae: in vitro M1 double-stranded RNA synthesis. Mol Cell Biol 6: 1552–1561

    PubMed  CAS  Google Scholar 

  • Esteban R, Wickner RB (1987) A new non-mendelian genetic element of yeast that increases cytopathology produced by M1 double-stranded RNA in ski strains. Genetics 117: 399–408

    PubMed  CAS  Google Scholar 

  • Esteban R, Wickner RB (1988) A deletion mutant of L-A double-stranded RNA replicates like M, double-stranded RNA. J Virol 62: 1278–1285

    PubMed  CAS  Google Scholar 

  • Esteban R, Fujimura T, Wickner RB (1988) Site-specific binding of viral plus single-stranded RNA to replicase-containing open virus-like particles of yeast. Proc Natl Acad Sci USA 85: 4411–4415

    Article  PubMed  CAS  Google Scholar 

  • Esteban R, Fujimura T, Wickner RB (1989) Internal and terminal cis-acting sites are necessary for in vitro replication of the L-A double-stranded RNA virus of yeast. EMBO J 8: 947–954

    PubMed  CAS  Google Scholar 

  • Esteban R, Rodriguez-Cousino N, Esteban LM (1993) Genomic organization of T and W, a new family of double-stranded RNA from Saccharomyces cerevisiae. Prog Nucl Acid Res 46: 155–182

    Article  CAS  Google Scholar 

  • Fujimura T, Wickner RB (1987) L-A double-stranded RNA viruslike particle replication cycle in Saccharomyces cerevisiae: particle maturation in vitro and effects of mak10 and pet18 mutations. Mol Cell Biol 7: 420–426

    PubMed  CAS  Google Scholar 

  • Fujimura T, Wickner RB (1988a) Gene overlap results in a viral protein having an RNA binding domain and a major coat protein domain. Cell 55: 663–671

    Article  PubMed  CAS  Google Scholar 

  • Fujimura T, Wickner RB (1988b) Replicase of L-A virus-like particles of Saccharomyces cerevisiae. In vitro conversion of exogenous L-A and M1 single-stranded RNAs to double-stranded form. J Biol Chem 263: 454–460

    Google Scholar 

  • Fujimura T, Wickner RB (1989) Reconstitution of template-dependent in vitro transcriptase activity of a yeast double-stranded RNA virus. J Biol Chem 264: 10872–10877

    PubMed  CAS  Google Scholar 

  • Fujimura T, Esteban R, Wickner RB (1986) In vitro L-A double-stranded RNA synthesis in virus-like particles from Saccharomyces cerevisiae. Proc Natl Acad Sci USA 83: 4433–4437

    Article  PubMed  CAS  Google Scholar 

  • Fujimura T, Esteban R, Esteban LM, Wickner RB (1990) Portable encapsidation signal of the L-A double-stranded RNA virus of S. cerevisiae. Cell 62: 819–828

    Article  PubMed  CAS  Google Scholar 

  • Fujimura T, Ribas JC, Makhov AM, Wickner RB (1992) Pol of gag-pol fusion protein required for encapsidation of viral RNA of yeast L-A virus. Nature 359: 746–749

    Article  PubMed  CAS  Google Scholar 

  • Fuller RS, Brake A, Thorner J (1989) Intracellular targeting and structural conservation of a prohormoneprocessing endoprotease. Science 246: 482–486

    Article  PubMed  CAS  Google Scholar 

  • Grimes JM, Burroughs JN, Gouet P, Diprose JM, Malby R, Zientara S, Mertens PPC, Stuart DI (1998) The atomic structure of the bluetongue virus core. Nature 395: 470–478

    Article  PubMed  CAS  Google Scholar 

  • Hannig EM, Leibowitz MJ (1985) Structure and expression of the M2 genomic segment of a type 2 killer virus of yeast. Nucleic Acids Res 13: 4379–4400

    Article  PubMed  CAS  Google Scholar 

  • Hausler A, Ballou L, Ballou CE, Robbins PW (1992) Yeast glycoprotein biosynthesis: MNT1 encodes an a-1,2mannosyltransferase involved in 0-glycosylation. Proc Natl Acad Sci USA 89: 6846–6850

    Article  PubMed  CAS  Google Scholar 

  • Herring AJ, Bevan AE (1974) Virus-like particles associated with the double-stranded RNA species found in killer and sensitive strains of the yeast Saccharomyces cerevisiae. J Gen Virol 22: 387–394

    Article  PubMed  CAS  Google Scholar 

  • Hill CL, Booth TF, Prasad BVV, Grimes JM, Mertens PPC, Sutton GC, Stuart DI (1999) The structure of a cypovirus and the functional organization of dsRNA viruses. Nat Struct Biol 6: 565–568

    Article  PubMed  CAS  Google Scholar 

  • Hill K, Boone C, Goebl M, Puccia R, Sdicu AM, Bussey H (1992) Yeast KRE2 defines a new gene family encoding probable secretory proteins, and is required for the correct N-glycosylation of proteins. Genetics 130: 273–283

    PubMed  CAS  Google Scholar 

  • Hopper JE, Bostian KA, Rowe LB, Tipper DJ (1977) Translation of the L-species dsRNA genome of the killer-associated virus-like particles of Saccharomyces cerevisiae. J Biol Chem 252: 9010–9017

    PubMed  CAS  Google Scholar 

  • Hsu CL, Stevens A (1993) Yeast cells lacking 5’–3’ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5’ cap structure. Mol Cell Biol 13: 4826–4835

    PubMed  CAS  Google Scholar 

  • Huan BF, Shen YQ, Bruenn JA (1991) In vivo mapping of a sequence required for interference with the yeast killer virus. Proc Natl Acad Sci USA 88: 1271–1275

    Article  PubMed  CAS  Google Scholar 

  • Hutchins K, Bussey H (1983) Cell wall receptor for yeast killer toxins: involvement of (1–6)-beta-D glucan. J Bacteriol 154: 161–169

    PubMed  CAS  Google Scholar 

  • Icho T, Wickner RB (1988) The MAK11 protein is essential for cell growth and replication of M double-stranded RNA and is apparently a membrane-associated protein. J Biol Chem 263: 1467–1475

    PubMed  CAS  Google Scholar 

  • Icho T, Wickner RB (1989) The double-stranded RNA genome of yeast virus L-A encodes its own putative RNA polymerase by fusing two open reading frames. J Biol Chem 264: 6716–6723

    PubMed  CAS  Google Scholar 

  • Jacks T, Madhani HD, Masiarz FR, Varmus HE (1988) Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55: 447–458

    Article  PubMed  CAS  Google Scholar 

  • Jacobs-Anderson JS, Parker R (1998) The 3’ to 5’ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3’ to 5’ exonucleases of the exosome complex. EMBO J 17: 1497–1506

    Article  Google Scholar 

  • Janda M, Ahlquist P (1993) RNA-dependent replication, transcription and persistence of Brome Mosaic virus RNA replicons in S. cerevisiae. Cell 72: 961–970

    Article  PubMed  CAS  Google Scholar 

  • Julius D, Brake A, Blair L, Kunisawa R, Thorner J (1984) Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for the processing of yeast prepro-alpha factor. Cell 36: 309–318

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Takaoka M, Tanaka S, Sassa H, Tanaka K, Polevoda B, Sherman F, Hirano H (2000) N“acetylation and proteolytic activity of the yeast 20S proteasome. J Biol Chem 275: 4635–4639

    Article  PubMed  CAS  Google Scholar 

  • Kollar R, Reinhold BB, Petrakova E, Yeh HJ, Ashwell G, Drgonova J, Kapteyn JC, Klis FM, Cabib E (1997) Architecture of the yeast cell wall. Beta-1,6-glucan interconnects mannoproteins, beta-1,3-glucan and chitin. J Biol Chem 272: 17762–17775

    Article  PubMed  CAS  Google Scholar 

  • Koltin Y (1988) The killer system of Ustilago maydis: secreted polypeptides encoded by viruses. In: Koltin Y, Leibowitz MJ (eds) Viruses of fungi and simple eukaryotes. Dekker, New York, pp 209–242

    Google Scholar 

  • Koonin EV (1992) Evolution of double-stranded RNA viruses: a case of polyphyletic origin from different groups of positive-stranded RNA viruses. Semin Virol 3: 327–339

    CAS  Google Scholar 

  • Lawton JA, Zeng CQ-Y, Mukherjee SK, Cohen J, Estes MK, Prasad BVV (1997) Three-dimensional structural analysis of recombinant rotavirus-like particles with intact and amino-terminal-deleted VP2: implications for the architecture of the VP2 capsid layer. J Virol 71: 7353–7360

    PubMed  CAS  Google Scholar 

  • Lee M, Pietras DF, Nemeroff ME, Corstanje BJ, Field LJ, Bruenn JA (1986) Conserved regions in defective interfering viral double-stranded RNAs from a yeast virus. J Virol 58: 402–407

    PubMed  CAS  Google Scholar 

  • Lee SI, Umen JG, Varmus HE (1995) A genetic screen identifies cellular factors involved in retroviral -1 frameshifting. Proc Natl Acad Sci USA 92: 65876591

    Google Scholar 

  • Lee Y-J, Wickner RB (1992) MAK10, a glucose-repressible gene necessary for replication of a dsRNA virus of Saccharomyces cerevisiae, has T cell receptor a-subunit motifs. Genetics 132: 87–96

    Google Scholar 

  • Leibowitz MJ, Wickner RB (1976) A chromosomal gene required for killer plasmid expression, mating, and spore maturation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 73: 2061–2065

    Article  PubMed  CAS  Google Scholar 

  • Li N, Erman M, Pangborn W, Duaxi WL, Park CM, Bruenn J, Ghosh D (1999) Structure of Ustilago maydis killer toxin KP6 a-subunit: multimeric assembly with a central pore. J Biol Chem 274: 20425–20431

    Article  PubMed  CAS  Google Scholar 

  • Lolle SJ, Bussey H (1986) In vivo evidence for posttranslational translocation and signal cleavage of the killer preprotoxin of Saccharomyces cerevisiae. Mol Cell Biol 6: 4274–4280

    PubMed  CAS  Google Scholar 

  • Lord JM, Roberts LM (1998) Toxin entry: retrograde transport through the secretory pathway. J Cell Biol 140: 733–736

    Article  PubMed  CAS  Google Scholar 

  • Lu G, Zhou ZH, Baker ML, Jakana J, Cai D, Wei X, Chen S, Gu X, Chiu W (1998) Structure of double-shelled rice dwarf virus. J Virol 72: 8541–8549

    PubMed  CAS  Google Scholar 

  • Lussier M, Sdicu A-M, Bussey H (1999) The KTR and MNNI mannosyltransferase families of Saccharomyces cerevisae. Biochim Biophys Acta Gen Subjects 1426: 323–334

    Article  CAS  Google Scholar 

  • Martegani E, Vanoni M, Mauri I, Rudoni S, Saliola M, Alberghina L (1997) Identification of gene encoding a putative RNA-helicase, homologous to SKI2, in chromosome VII of Saccharomyces cerevisiae. Yeast 13: 391–397

    Article  PubMed  CAS  Google Scholar 

  • Martinac B, Zhu H, Kubalski A, Zhou XL, Culbertson M, Bussey H, Kung C (1990) Yeast K1 killer toxin forms ion channels in sensitive yeast spheroplasts and in artificial liposomes. Proc Natl Acad Sci USA 87: 6228–6232

    Article  PubMed  CAS  Google Scholar 

  • Masison DC, Blanc A, Ribas JC, Carroll K, Sonenberg N, Wickner RB (1995) Decoying the cap-mRNA degradation system by a dsRNA virus and poly(A)-mRNA surveillance by a yeast antiviral system. Mol Cell Biol 15: 2763–2771

    PubMed  CAS  Google Scholar 

  • Meskauskas A (1990) Nucleotide sequence of cDNA to yeast M2–1 dsRNA segment. Nucleic Acids Res 18: 6720

    Article  PubMed  CAS  Google Scholar 

  • Meskauskas A, Citivicius D (1992) The K2-killer toxin and immunity-encoding region from Saccharomyces cerevisiae: structure and expression in yeast. Gene 111: 135–139

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D (1997) The exosome, a conserved eukaryotic RNA processing complex containing multiple 3’–5’ exoribonucleases. Cell 91: 457–466

    Article  PubMed  CAS  Google Scholar 

  • Naitow H, Canady MA, Wickner RB, Johnson JE (2002) LA dsRNA virus at 3.4 Angstroms resolution reveals particle architecture and mRNA decapping mechanism. Nat Struct Biol 9: 725–728

    Article  PubMed  CAS  Google Scholar 

  • Neville DM, Hudson TH (1986) Transmembrane transport of diphtheria toxin, related toxins and colicins. Annu Rev Biochem 55: 195–224

    Article  PubMed  CAS  Google Scholar 

  • Newman AM, Elliot SG, McLaughlin CS, Sutherland PA, Warner RC (1981) Replication of double-stranded RNA of the virus-like particles of Saccharomyces cerevisiae. J Virol 38: 263–271

    PubMed  CAS  Google Scholar 

  • Ohtake Y, Wickner RB (1995) Yeast virus propagation depends critically on free 60S ribosomal subunit concentration. Mol Cell Biol 15: 2772–2781

    PubMed  CAS  Google Scholar 

  • Park CM, Lopinski JD, Masuda J, Tzeng TH, Bruenn JA (1996) A second double-stranded RNA virus from yeast. Virology 216: 451–454

    Article  PubMed  CAS  Google Scholar 

  • Pestova TV, Lomakin IB, Lee JH, Choi SK, Dever TE, Hellen CUT (2000) The ribosomal subunit joining reaction in eukaryotes requires eIF5B. Nature 403: 332–335

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer P, Radler F (1984) Comparison of the killer toxin of several yeasts and the purification of a toxin of type K2. Arch Microbiol 137: 357–361

    Article  PubMed  CAS  Google Scholar 

  • Price BD, Rueckert RR, Ahlquist P (1996) Complete replication of an animal virus and maintenance of expression vectors derived from it in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93: 9465–9470

    Article  PubMed  CAS  Google Scholar 

  • Ratti G, Buck KW (1978) Semiconservative transcription in particles of a double-stranded RNA mycovirus. Nucleic Acids Res 5: 3843–3854

    Article  PubMed  CAS  Google Scholar 

  • Redding K, Holcomb C, Fuller RS (1991) Immunolocalization of Kex2 protease identifies a putative late Golgi compartment in the yeast Saccharomyces cerevisiae. J Cell Biol 113: 527–538

    Article  PubMed  CAS  Google Scholar 

  • Reinisch KM, Nibert ML, Harrison SC (2000) Structure of the reovirus core at 3.6 A resolution. Nature 404: 960–967

    Article  PubMed  CAS  Google Scholar 

  • Rhee SK, Icho T, Wickner RB (1989) Structure and nuclear localization signal of the SKI3 antiviral protein of Saccharomyces cerevisiae. Yeast 5: 149–158

    Article  PubMed  CAS  Google Scholar 

  • Ribas JC, Fujimura T, Wickner RB (1994a) A cryptic RNA-binding domain in the Pol region of the L-A dsRNA virus Gag-Pol fusion protein. J Virol 68: 6014–6020

    PubMed  CAS  Google Scholar 

  • Ribas JC, Fujimura T, Wickner RB (1994b) Essential RNA binding and packaging domains of the Gag-Pol fusion protein of the L-A double-stranded RNA virus of Saccharomyces cerevisiae. J Biol Chem 269: 28420–28428

    PubMed  CAS  Google Scholar 

  • Ridley SP, Sommer SS, Wickner RB (1984) Superkiller mutations in Saccharomyces cerevisiae suppress exclusion of M2 double-stranded RNA by L-A-HN and confer cold sensitivity in the presence of M and L-AHN. Mol Cell Biol 4: 761–770

    PubMed  CAS  Google Scholar 

  • Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotech 17: 1030–1032

    Article  CAS  Google Scholar 

  • Rogers D (1976) The genetic and phenotypic characterization of killer strains of yeast isolated from different sources. Queen Mary College, Univ London

    Google Scholar 

  • Rogers D, Bevan EA (1978) Group classification of killer yeasts based on cross-reactions between strains of different species and origin. J Gen Microbiol 105: 199–202

    Article  Google Scholar 

  • Schmitt MJ (1995) Cloning and expression of a cDNA copy of the viral K28 killer toxin gene in yeast. Mol Gen Genet 246: 236–246

    Article  PubMed  CAS  Google Scholar 

  • Schmitt MJ, Radler F (1987) Mannoprotein of the yeast cell wall as primary receptor for the killer toxin of Saccharomyces cerevisiae strain 28. J Gen Microbiol 133: 3347–3354

    PubMed  CAS  Google Scholar 

  • Schmitt M, Radler F (1988) Molecular structure of the cell wall receptor for killer toxin K28 in Saccharomyces cerevisiae. J Bacteriol 170: 2192–2196

    PubMed  CAS  Google Scholar 

  • Schmitt MJ, Tipper DJ (1990) K28, a unique double-stranded RNA killer virus of Saccharomyces cerevisiae. Mol Cell Biol 10: 4807–4815

    PubMed  CAS  Google Scholar 

  • Schmitt MJ, Klavehn P, Wang J, Schonig I, Tipper DJ (1996) Cell cycle studies on the mode of action of yeast K28 killer toxin. Microbiology 142: 2655–2662

    Article  PubMed  CAS  Google Scholar 

  • Sclafani RA, Fangman WL (1984) Conservative replication of double-stranded RNA in Saccharomyces cerevisiae. Mol Cell Biol 4: 1618–1626

    PubMed  CAS  Google Scholar 

  • Searfoss AM, Wickner RB (2000) 3’ poly(A) is dispensable for translation. Proc Natl Acad Sci USA 97: 9133–9137

    Google Scholar 

  • Searfoss A, Dever TE, Wickner RB (2001) Linking the 3’ poly(A) tail to the subunit joining step of translation initiation: relations of Pablp, eIF5B (Funl2p) and Ski2p-Slhlp. Mol Biol Cell 21: 4900–4908

    Article  CAS  Google Scholar 

  • Seidah NG, Chretien M (1999) Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive peptides. Brain Res 848: 45–62

    Article  PubMed  CAS  Google Scholar 

  • Sesti F, Shih TM, Nikolaeva N, Goldstein S (2001) Immunity to killer toxin: internal TOK1 blockade. Cell 105: 637–644

    Article  PubMed  CAS  Google Scholar 

  • Shaninian S, Bussey H (2000) Beta-1,6-glucan synthesis in Saccharomyces cerevisiae. Mol Microbiol 35: 477–489

    Article  Google Scholar 

  • Shatkin AJ, Kozak M (1983) Biochemical aspects of reovirus transcription and translation. In: Joklik WK (ed) The Reoviridae. Plenum Press, New York, pp 79–106

    Google Scholar 

  • Shen Y, Bruenn JA (1993) RNA structural requirements for RNA binding, replication, and packaging in the yeast double-stranded RNA virus. Virology 195: 481–491

    Article  PubMed  CAS  Google Scholar 

  • Sikorski RS, Boguski MS, Goebl M, Hieter P (1990) A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60: 307–317

    Article  PubMed  CAS  Google Scholar 

  • Skipper N, Thomas DY, Lau PC (1984) Cloning and sequencing of the preprotoxin-coding region of the yeast M1 double-stranded RNA. EMBO J 3: 107111

    Google Scholar 

  • Sommer SS, Wickner RB (1982) Yeast L dsRNA consists of at least three distinct RNAs; evidence that the non-Mendelian genes [HOK], [NEX] and [EXL] are on one of these dsRNAs. Cell 31: 429–441

    Article  PubMed  CAS  Google Scholar 

  • Sommer SS, Wickner RB (1987) Gene disruption indicates that the only essential function of the SKI8 chromosomal gene is to protect Saccharomyces cerevisiae from viral cytopathology. Virology 157: 252–256

    Article  PubMed  CAS  Google Scholar 

  • Stevens A, Maupin MK (1987) A 5’ —> 3’ exoribonuclease of Saccharomyces cerevisiae: size and novel substrate specificity. Arch Biochem Biophys 252: 339–347

    Article  PubMed  CAS  Google Scholar 

  • Streisinger G, Enrich J, Stahl MM (1967) Chromosome structure in bacteriophage T4. IV. Terminal redundancy and length determination. Proc Natl Acad Sci USA 57: 292–295

    Google Scholar 

  • Sturley SL, Elliot Q, LeVitre J, Tipper DJ, Bostian KA (1986) Mapping of functional domains within the Saccharomyces cerevisiae type 1 killer preprotoxin. EMBO J 5: 3381–3389

    PubMed  CAS  Google Scholar 

  • Talloczy Z, Menon S, Neigeborn L, Leibowitz MJ (1998) The [KIL-d] cytoplasmid genetic element of yeast results in epigenetic regulation of viral M double-stranded RNA gene expression. Genetics 150: 21–30

    PubMed  CAS  Google Scholar 

  • Talloczy Z, Mazar R, Georgopoulos DE, Ramos F, Leibowitz MJ (2000) The ( KIL-d] element specifically regulates viral gene expression in yeast. Genetics 155: 601–609

    Google Scholar 

  • Tercero JC, Wickner RB (1992) MAK3 encodes an Nacetyltransferase whose modification of the L-A gag N-terminus is necessary for virus particle assembly. J Biol Chem 267: 20277–20281

    Google Scholar 

  • Tercero JC, Riles LE, Wickner RB (1992) Localized muta-genesis and evidence for post-transcriptional regulation of MAK3, a putative N-acetyltransferase required for dsRNA virus propagation in Saccharomyces cerevisiae. J Biol Chem 267: 20270–20276

    PubMed  CAS  Google Scholar 

  • Tercero JC, Dinman JD, Wickner RB (1993) Yeast MAK3 N-acetyltransferase recognizes the N-terminal four amino acids of the major coat protein (gag) of the L-A double-stranded RNA virus. J Bacteriol 175: 3192–3194

    PubMed  CAS  Google Scholar 

  • Thacker C, Rose AM (2000) A look at the C. elegans kex2/subtilisin-like proprotein convertase family. Bioessays 22: 545–553

    Article  PubMed  CAS  Google Scholar 

  • Thiele DJ, Hannig EM, Leibowitz MJ (1984) Genome structure and expression of a defective interfering mutant of the killer virus of yeast. Virology 137: 20–31

    Article  PubMed  CAS  Google Scholar 

  • Thomas L, Cooper A, Bussey H, Thomas G (1990) Yeast KEX1 protease cleaves a prohormone processing intermediate in mammalian cells. J Biol Chem 265: 10821–10824

    PubMed  CAS  Google Scholar 

  • Toh-e A, Guerry P, Wickner RB (1978) Chromosomal superkiller mutants of Saccharomyces cerevisiae. J Bacteriol 136: 1002–1007

    CAS  Google Scholar 

  • Toh-e A, Guerry KP, Wickner RB (1980) A stable plasmid carrying the yeast Leu2 gene and containing only yeast deoxyribonucleic acid. J Bacteriol 141: 413–416

    CAS  Google Scholar 

  • Tu C, Tzeng T-H, Bruenn JA (1992) Ribosomal movement impeded at a pseudoknot required for ribosomal frameshifting. Proc Natl Acad Sci USA 89: 8636–8640

    Article  PubMed  CAS  Google Scholar 

  • Van Etten JL, Burbank DE, Cupels DA, Lane LA, Vidaver AK (1980) Semiconservative synthesis of single-stranded RNA by bacteriophage Phi6 RNA polymerase. J Virol 33: 769–773

    PubMed  Google Scholar 

  • Vermut M, Widner WR, Dinman JD, Wickner RB (1994) Sequence of MKTJ, needed for propagation of M2 satellite dsRNA of the L-A virus of Saccharomyces cerevisiae. Yeast 10: 1477–1479

    Article  PubMed  CAS  Google Scholar 

  • Wesolowski M, Wickner RB (1984) Two new double-stranded RNA molecules showing non-mendelian inheritance and heat inducibility in Saccharomyces cerevisiae. Mol Cell Biol 4: 181–187

    PubMed  CAS  Google Scholar 

  • Wickner RB (1978) Twenty-six chromosomal genes needed to maintain the killer double-stranded RNA plasmid of Saccharomyces cerevisiae. Genetics 88: 419–425

    PubMed  CAS  Google Scholar 

  • Wickner RB (2001) Viruses of yeasts, fungi and parasitic microorganisms. In: Knipe DM, Howley PM (eds) Fields virology, vol 1. Lippincott, Williams and Wilkins, Philadelphia, pp 629–658

    Google Scholar 

  • Wickner RB, Leibowitz MJ (1976a) Chromosomal genes essential for replication of a double-stranded RNA plasmid of Saccharomyces cerevisiae: the killer character of yeast. J Mol Biol 105: 427–443

    Article  PubMed  CAS  Google Scholar 

  • Wickner RB, Leibowitz MJ (1976b) Two chromosomal genes required for killing expression in killer strains of Saccharomyces cerevisiae. Genetics 82: 429–442

    PubMed  CAS  Google Scholar 

  • Wickner RB, Ridley SP, Fried HM, Ball SG (1982) Ribosomal protein L3 is involved in replication or maintenance of the killer double-stranded RNA genome of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 79: 4706–4708

    Article  PubMed  CAS  Google Scholar 

  • Wickner RB, Icho T, Fujimura T, Widner WR (1991) Expression of yeast L-A double-stranded RNA virus proteins produces derepressed replication: a ski-phenocopy. J Virol 65: 155–161

    PubMed  CAS  Google Scholar 

  • Widner WR, Wickner RB (1993) Evidence that the SKI antiviral system of Saccharomyces cerevisiae acts by blocking expression of viral mRNA. Mol Cell Biol 13: 4331–4341

    PubMed  CAS  Google Scholar 

  • Williams TL, Leibowitz MJ (1987) Conservative mechanism of the in vitro transcription of killer virus of yeast. Virology 158: 231–234

    Article  PubMed  CAS  Google Scholar 

  • Woods DR, Bevan EA (1968) Studies on the nature of the killer factor produced by Saccharomyces cerevisiae. J Gen Microbiol 51: 115–126

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Bussey H (1991) Mutational analysis of the functional domains of yeast K1 killer toxin. Mol Cell Biol 11: 175–181

    PubMed  CAS  Google Scholar 

  • Zhu H, Bussey H, Thomas DY, Gagnon J, Bell AW (1987) Determination of the carboxyl termini of the alpha and beta subunits of yeast K1 killer toxin. Requirement of a carboxypeptidase B-like activity for maturation. J Biol Chem 262: 10728–10732

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wickner, R.B., Gardner, N.A., Bussey, H., Fujimura, T., Esteban, R. (2004). RNA Viruses and Killer Genetics of Saccharomyces . In: Kück, U. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07426-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07426-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07667-1

  • Online ISBN: 978-3-662-07426-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics