Linear DNA Plasmids and Killer System of Kluyveromyces lactis

  • N. Gunge
  • M. Tokunaga
Chapter
Part of the The Mycota book series (MYCOTA, volume 2)

Abstract

Plasmids were originally defined as covalently closed circular DNAs replicating outside the chro- mosome. Indeed, the first eukaryotic plasmid, 2µm DNA of Saccharomyces cerevisiae (Sinclair et al. 1967), and the subsequent fungal p1DNA of Podospora anserina (Stahl et al. 1978), were a circular type. This definition, however, was dispelled by the discoveries of mitochondrial linear S plasmids from Zea mays (Pring et al. 1977), the cytoplasmic linear pGKL plasmids from the dairy yeast Kluyveromyces lactis (Gunge et al. 1981; Wésolowski et al. 1982a), and the mitochondrial linear pAl from the fungus Ascobolus immersus (Francou 1981). The linear plasmids, thought to be rare in the early 1980s (Esser et al. 1986), now have a great distribution in eukaryotes, outnumbering circular ones, even in bacteria (Meinhardt et al. 1990, 1997). There is a parallel with the discoveries of mitochondrial genomes: in discord with the earlier belief of circular DNA, a number of linear mitochondrial genomes have been isolated from yeasts including Candida spp., Pichia spp., and Williopsis (Hansenula) spp. as well as from the cilata protozoan Tetrahymena spp. (Nosek et al. 1998). This chapter deals with our recent knowledge of the molecular biology of yeast DNA linear plasmids. A series of related review articles have been published (Gunge 1986, 1988, 1995; Volkert et al. 1989; Stark et al. 1990; Meinhardt et al. 1990; Meinhardt and Rohe 1993; Fukuhara 1995; Magliani et al. 1997; Schaffrath and Breunig 2000; Meinhardt and Schaffrath 2001).

Keywords

Xylose Streptomyces Aspergillus Indole Galactose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldari C, Murray JAH, Ghiara P, Cesaren G, Galeotii CL (1987) A novel leader peptide which allows efficient secretion of a fragment of human interleukin 113 in Saccharomyces cerevisiae. Embo J 6: 229 – 234Google Scholar
  2. Bertrand H (1986) The kalilo senescence factor of Neurospora intermedia: a mitochondrial IS-element derived from a nuclear plasmid. In: Wickner RB, Hinnebusch A, Lambowitz AM, Gunsalus IC, Hollander A (eds) Extrachromosomal elements in lower eukaryotes. Basic life sciences, vol 40. Plenum Press, New York, pp 93 – 103CrossRefGoogle Scholar
  3. Blaisonneau J, Nosek J, Fukuhara H (1999) Linear DNA plasmid pPK2 of Pichia kluyveri: distinction between cytoplasmic and mitochondrial linear plasmids in yeasts. Yeast 15: 781 – 791PubMedCrossRefGoogle Scholar
  4. Bole DG, Hendershot LM, Kearney JF (1986) Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J Cell Biol 102: 1558 – 1566PubMedCrossRefGoogle Scholar
  5. Bolen PL, Eastman EM, Cihak PL, Hayman GT (1994) Isolation and sequence analysis of a gene from the linear DNA plasmid pPacl-2 of Pichia acaciae that shows similarity to a killer toxin gene of Kluyveromyces lactis. Yeast 10: 403 – 414PubMedCrossRefGoogle Scholar
  6. Butler AR, O’Donnell RW, Martin VJ, Gooday GW, Stark MIR (1991a) Kluyveromyces lactis toxin has an essential chitinase activity. Eur J Biochem 199:483488Google Scholar
  7. Butler AR, Porter M, Stark MIR (1991b) Intracellular expression of Kluyveromyces lactis toxin y subunit mimics treatment with exogenous toxin and distinguishes two classes of toxin-resistant mutant. Yeast 7: 617 – 625PubMedCrossRefGoogle Scholar
  8. Butler AR, White JH, Stark MJR (1991c) Analysis of the response of Saccharomyces cerevisiae cells to Kluyveromyces lactis toxin. J Gen Micro 137: 17491757Google Scholar
  9. Butler AR, White JH, Folawiyo Y, Edlin A, Gardiner D, Stark MJR (1994) Two Saccharomyces cerevisiae genes which control sensitivity to G1 arrest induced by Kluyveromyces lactis toxin. Mol Cell Biol 14: 63066316Google Scholar
  10. Challberg MD, Kelly TJ (1982) Eukaryotic DNA replication: viral and plasmid model systems. Annu Rev Biochem 561: 901 – 934CrossRefGoogle Scholar
  11. Chan BS-S, Court DA, Vierula PJ, Bretrand H (1991) The kalilo linear senescense-inducing plasmid of Neurospora is an invertron and encodes DNA and RNA polymerases. Curr Genet 20: 225 – 237PubMedCrossRefGoogle Scholar
  12. Cong Y-S, Wésolowski-Louvel M, Fukuhara H (1994a) Creation of a functional promoter by rearrangement in a Kluyveromyces lactis linear plasmid. Gene 147: 125129Google Scholar
  13. Cong Y-S, Yarrow D, Li Y-Y, Fukuhara H (1994b) Linear DNA plasmids from Pichia etchellsii, Debaryomyces hansenii and Wingea robertsiae. Microbiology 140: 1327 – 1335PubMedCrossRefGoogle Scholar
  14. Court DA, Griffiths AJF, Kraus SR, Russell PJ, Bertrand H (1991) A new senescence-inducing mitochondrial linear plasmid in field-isolated Neurospora crassa strains from India. Curr Genet 19: 129 – 137PubMedCrossRefGoogle Scholar
  15. M. Tokunaga, De Louvencourt L, Fukuhara H, Heslot H, Wesolowski M (1983) Transformation of Kluyveromyces lactis y killer plasmid DNA. J Bacteriol 154: 737 – 742Google Scholar
  16. Escarmis C, Salas M (1982) Nucleotide sequence of the early genes 3 and 4 of bacteriophage 029. Nucleic Acids Res 10: 5785 – 5798PubMedCrossRefGoogle Scholar
  17. Esser K, Kück U, Lang-Hinrichs C, Lemke P, Osiewacz HD, Stahl U, Tudzynski P (1986) Plasmids of eukaryotes. Fundamentals and applications. Springer, Berlin Heidelberg New YorkGoogle Scholar
  18. Fichtner L, Schaffrath R (2002) KTI11 and KTI13, Saccharomyces cerevisiae genes controlling sensitivity to GI arrest induced by Kluyveromyces lactis zymocin. Mol Microbiol 44: 865-875Google Scholar
  19. Fichtner L, Frohloff F, Burkner K, Larsen M, Breunig KD, Schaffrath R (2002) Molecular analysis of KTI12/ TOT4, a Saccharomyces cerevisiae gene required for Kluyveromyces lactis zymocin action. Mol Microbiol 43: 783 – 791PubMedCrossRefGoogle Scholar
  20. Fleer R, Chen XJ, Amellal N, Yeh P, Fournier A, Guinet F, Gault N, Faucher D, Folliard F, Fukuhara H, Mayaux J-F (1991) High-level secretion of correctly processed recombinant interleukin-lb in Kluyveromyces lactis. Gene 107: 285 – 295PubMedCrossRefGoogle Scholar
  21. Förstemann K, Linger J (2001) Molecular basis for telomere repeat divergence in budding yeast. Mol Cell Biol 21: 7277 – 7286PubMedCrossRefGoogle Scholar
  22. Francou F (1981) Isolation and characterization of a linear DNA molecule in the fungus Ascobolus immersus. Mol Gen Genet 184: 440 – 444CrossRefGoogle Scholar
  23. Friedberg EC (1988) Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae. Microbiol Rev 52: 70102Google Scholar
  24. Frohloff F, Fichtner L, Jablonowski D, Breunig KD, Schaffrath F (2001) Saccharomyces cerevisiae Elongator mutations confer resistance to the Kluyveromyces lactis zymocin. Embo J 20: 1993 – 2003CrossRefGoogle Scholar
  25. Frolova EI, Zalmanzon ES (1984) A study of viral genomes in cells transformed by the nononcogenic human adenovirus type 5 and highly oncogenic bovine adenovirus type 3. Curr Top Microbiol Immunol 111: 65 – 89PubMedCrossRefGoogle Scholar
  26. Fujimura H, Hishinuma F, Gunge N (1987) Terminal segment of Kluyveromyces lactis linear DNA plasmid pGKL2 supports autonomous replication of hybrid plasmids in Saccharomyces cerevisiae. Curr Genet 12: 99 – 104PubMedCrossRefGoogle Scholar
  27. Fujimura H, Yamada T, Hishinuma F, Gunge N (1988) DNA replication in vivo of linear DNA killer plasmids pGKL1 and pGKL2 in Saccharomyces cerevisiae. FEMS Lett 49: 441 – 444CrossRefGoogle Scholar
  28. Fukuda K, Maebuchi M, Takata T, Gunge N (1997) The linear plasmid pDHL from the Debaryomyces hansenii encodes a protein highly homologous to the pGKL1-plasmid DNA polymerase. Yeast 13: 613620Google Scholar
  29. Fukuhara H (1995) Linear DNA plasmids of yeasts. FEBS Microbiol Lett 131: 1 – 9CrossRefGoogle Scholar
  30. Gallo E, Galeotti CL (1990) Transplacement of a nuclear gene into the cytoplasmic killer plasmid of Kluyveromyces lactis. Yeast 6: S547Google Scholar
  31. Griffiths AFJ, Kraus SR, Barton R, Court DA, Myers CM, Bertrand H (1990) Heterokaryotic transmission of senescence plasmid DNA in Neurospora. Curr GenetGoogle Scholar
  32. Gunge N (1986) Linear DNA killer plasmids from the yeast Kluyveromyces. Yeast 2: 153 – 162PubMedCrossRefGoogle Scholar
  33. Gunge N (1988) Kluyveromyces linear DNA plasmids. In: Koltin Y, Leibowitz MJ (eds) Viruses of fungi and simple eukaryotes. Dekker, New York, pp 265 – 282Google Scholar
  34. Gunge N (1995) Plasmid DNA and the killer phenomenon in Kluyveromyces. In: Kück U (ed) Mycota II (series eds Esser K, Lemke PA). Genetics and biotechnology. Springer, Berlin Heidelberg New York, pp 189 – 209Google Scholar
  35. Gunge N, Kitada K (1988) Replication and maintenance of the Kluyveromyces linear pGKL plasmids. Eur J Epideminol 4: 409 – 414CrossRefGoogle Scholar
  36. Gunge N, Sakaguchi K (1981) Intergeneric transfer of deoxyribonucleic acid killer plasmids, pGKL1 and pGKL2, from Kluyveromyces lactis into Saccharomyces cerevisiae by cell fusion. J Bacteriol 147: 155 – 160PubMedGoogle Scholar
  37. Gunge N, Yamane C (1984) Incompatibility of linear DNA killer plasmids pGKL1 and pGKL2 from Kluyveromyces lactis with mitochondrial DNA from Saccharomyces cerevisiae. J Bacteriol 159: 533 – 539PubMedGoogle Scholar
  38. Gunge N, Tamaru A, Ozawa F, Sakaguchi K (1981) Isolation and characterization of linear deoxy-ribonucleic acid plasmids from Kluyveromyces lactis and the plasmidassociated killer character. J Bacteriol 145: 382 – 390PubMedGoogle Scholar
  39. Gunge N, Murata K, Sakaguchi K (1982) Transformation of Saccharomyces cerevisiae with linear DNA killer plasmids from Kluyveromyces lactis. J Bacteriol 151: 462 – 464PubMedGoogle Scholar
  40. Gunge N, Murakami K, Takesako T, Moriyama M (1990) Mating type locus-dependent stability of the Kluyveromyces linear pGKL plasmids in Saccharomyces cerevisiae. Yeast 6: 417 – 427PubMedCrossRefGoogle Scholar
  41. Gunge N, Fukuda K, Morikawa S, Murakami K, Takeda M, Miwa A (1993) Osmophilic linear plasmids from the salt-tolerant yeast Debaryomyces hansenii. Curr Genet 23: 443 – 449PubMedCrossRefGoogle Scholar
  42. Gunge N, Takahashi S, Fukuda K, Meinhardt F (1994) UV hypersensitivity of yeast linear plasmids. Curr Genet 26: 369 – 373PubMedCrossRefGoogle Scholar
  43. Gunge N, Fukuda K, Takahashi S, Meinhardt F (1995) Migration of the yeast linear DNA plasmid from the cytoplasm into the nucleus in Saccharomyces cerevisiae. Curr Genet 28: 280 – 288PubMedCrossRefGoogle Scholar
  44. Gunge N, Takata H, Fukuda K, Iwao S, Miyakawa I (2000) Relocation of a cytoplasmic yeast linear plasmid to the nucleus is associated with circularization via non-homologous recombination involving inverted terminal repeats. Mol Gen Genet 263: 854 – 866CrossRefGoogle Scholar
  45. Gunge N, Takata H, Matsuura A, Fukada K (2003) Progressive rearrangement of telomeric sequences added to both the ITR ends of the yeast linear pGKL plasmid. Biol Proc Online 56: 29 – 42CrossRefGoogle Scholar
  46. Hishinuma F, Hirai K (1991) Genome organization of the linear plasmid, pSKL, isolated from Saccharomyces kluyveri. Mol Gen Genet 226:97-106 Google Scholar
  47. Hishinuma F, Nakamura K, Hirai K, Nishizawa R, Gunge N, Maeda T (1984) Cloning and nucleotide sequences of the linear DNA killer plasmids from yeast. Nucleic Acids Res 12: 7581 – 7597PubMedCrossRefGoogle Scholar
  48. Ito J, Braithwaite DK (1991) Compilation and alignment of DNA polymerase sequences. Nucleic Acids Res 19: 4045 – 4057PubMedCrossRefGoogle Scholar
  49. Jablonowski D, Butler AR, Fichtner L, Gardiner D, Schaffrath R, Stark MJR (2001a) Sit4p protein phosphatase is required for sensitivity of Saccharomyces cerevisiae to Kluyveromyces lactis zymocin. Genetics 159: 1479 – 1489PubMedGoogle Scholar
  50. Jablonowski D, Fichtner L, Martin VJ, Klassen R, Meinhardt F, Stark MJR, Schaffrath R (2001b) Saccharomyces cerevisiae cell wall chitin, the Kluyveromyces lactis zymocin receptor. Yeast 18: 1285 – 1299PubMedCrossRefGoogle Scholar
  51. Jablonowski D, Frohloff F, Fichtner L, Stark MJR, Schaffrath R (2001c) Kluyveromyces lactis zymocin mode of action is linked to RNA polymerase II function via Elongator. Mol Microbiol 42: 1095 – 1105Google Scholar
  52. Kämper J, Meinhardt F, Gunge N, Esser K (1989a) New recombinant linear DNA-elements derived from Kluyveromyces lactis killer plasmids. Nucleic Acids Res 17: 1781PubMedCrossRefGoogle Scholar
  53. Kämper J, Meinhardt F, Gunge N, Esser K (1989b) In vivo construction of linear vectors based on killer plasmids from Kluyveromyces lactis: selection of a nuclear gene results in attachment of telomeres. Mol Cell Biol 9: 3931 – 3937PubMedGoogle Scholar
  54. Kämper J, Esser K, Gunge N, Meinhardt F (1991) Heterologous gene expression on the linear DNA killer plasmid from Kluyveromyces lactis. Curr Genet 19: 109 – 118PubMedCrossRefGoogle Scholar
  55. Kato S, Ishibashi M, Tatsuda D, Tokunaga H, Tokunaga M (2001) Efficient expression, purification and characterization of mouse salivary a-amylase secreted from methylotrophic yeast, Pichia pastoris. Yeast 18: 643 – 655PubMedCrossRefGoogle Scholar
  56. Kawamoto S, Arai N, Kobayashi M, Kawahara K, Iwahashi H, Tanabe C, Hatori H, Ohno T, Nakamura T (1990) Isolation and characterization of mutants of Saccharomyces cerevisiae resistant to killer toxin of Kluyveromyces lactis. J Ferment Bioeng 70: 222 – 227CrossRefGoogle Scholar
  57. Kawamoto S, Nomura M, Ohno T (1992) Cloning and characterization of SKT5, a Saccharomyces cerevisiae gene that affects protoplast regeneration and resistance to killer toxin of Kluyveromyces lactis. J Ferment Bioeng 74: 199 – 208CrossRefGoogle Scholar
  58. Kempken F (1995a) Plasmid DNA in mycelial fungi. In: Kück U (ed) Mycota II (series eds Esser K, Lemke PA). Genetics and biotechnology. Springer, Berlin Heidelberg New York, pp 169 – 187Google Scholar
  59. Kempken F (1995b) Horizontal transfer of a mitochondrial plasmid. Mol Gen Genet 248: 89 – 94PubMedCrossRefGoogle Scholar
  60. Kempken F, Hermanns J, Osiewacz HD (1992) Evolution of linear plasmids. J Mol Evol 35: 502 – 513PubMedCrossRefGoogle Scholar
  61. Kikuchi Y, Hirai K, Hishinuma F (1984) The yeast linear DNA killer plasmids, pGKL1 and pGKL2, possess terminally attached proteins. Nucleic Acids Res 12: 5685 – 5692PubMedCrossRefGoogle Scholar
  62. Kikuchi Y, Hirai K, Gunge N, Hishinuma F (1985) Hairpin plasmid – a novel linear DNA of perfect hairpin structure. Embo J 4: 1881 – 1886PubMedGoogle Scholar
  63. Kishida K, Tokunaga M, Katayose Y, Yajima H, KawamuraWatabe A, Hishinuma F (1996) Isolation and genetic characterization of pGKL killer-insensitive mutants (iki) from Saccharomyces cerevisiae. Biosci Biotech Biochem 60: 798 – 801CrossRefGoogle Scholar
  64. Kitada K, Gunge N (1988) Palindrome-hairpin linear plasmids possessing only a part of the ORF1 gene of the yeast killer plasmid pGKL1. Mol Gen Genet 215: 46 – 52PubMedCrossRefGoogle Scholar
  65. Klassen R, Tontsidou L, Larsen M, Meinhardt F (2001) Genome organization of the linear cytoplasmic element pPEIB from Pichia etchellsii.Yeast 18: 953 – 961Google Scholar
  66. Larsen M, Meinhardt F (2000) Kluyveromyces lactis killer system: identification of a new gene encoded by pGKL2. Curr Genet 38: 271 – 275Google Scholar
  67. Larsen M, Gunge N, Meinhardt F (1998) Kluyveromyces lactis killer plasmid pGKL2: evidence for a viral-like capping enzyme encoded by ORF3. Plasmid 40: 243 – 246Google Scholar
  68. Li Y, Takagi Y, Jiang Y, Tokunaga M, Erdjument-Bromage H, Tempst P, Kornberg RD (2001) A multiprotein complex that interacts with RNA polymerase II Elongator. J Biol Chem 276: 29628 – 29631PubMedCrossRefGoogle Scholar
  69. Magliani W, Conti S, Gerloni M, Bertolotti D, Polonelli L (1997) Yeast killer systems. Clin Microbiol Rev 10: 369 – 400PubMedGoogle Scholar
  70. Masters BS, Stohl LL, Clayton DA (1987) Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 51: 89 – 99PubMedCrossRefGoogle Scholar
  71. McEachern MJ, Blackburn EH (1994) A conserved sequence motif within the exceptionally diverse telomeric sequences of budding yeasts. Proc Natl Acad Sci USA 91: 3453 – 3457PubMedCrossRefGoogle Scholar
  72. McNeel GD, Tamanoi F (1991) Terminal region recognition factor 1, a DNA-binding protein recognizing the inverted terminal repeats of the pGKI linear DNA plasmids. Proc Natl Acad Sci USA 88: 11398 – 11402PubMedCrossRefGoogle Scholar
  73. Meinhardt F, Rohe M (1993) Extranuclear inheritance: linear protein-primed replicating genomes in plants and microorganisms. In: Behnke HD, Lüttge U, Esser K, Kadereit JW, Runge M (eds) Progress in botany, vol 54. Springer, Berlin Heidelberg New York, pp 334 – 357Google Scholar
  74. Meinhardt F, Schaffrath R (2001) Extranuclear inheritance: cytoplasmic linear double-stranded DNA killer elements of the dairy yeast Kluyveromyces lactis. Progress in botany, vol 62. Springer, Berlin Heidelberg New York, pp 51 – 70Google Scholar
  75. Meinhardt F, Kempken F, Kämper J, Esser K (1990) Linear plasmids among eukaryotes: fundamentals and application. Curr Genet 17: 89 – 95PubMedCrossRefGoogle Scholar
  76. Meinhardt F, Wodara C, Larsen M, Schickel J (1994) A novel approach to express a heterologous gene on linear killer plasmids: expression of the bacterial aph gene from a cytoplasmic promoter without in-phase fusion to the plasmid open reading frame. Plasmid 32: 318 – 327PubMedCrossRefGoogle Scholar
  77. Meinhardt F, Schaffrath R, Larsen M (1997) Microbial linear plasmids (minireview). Appl Microbiol Biotechnol 47: 329 – 336PubMedCrossRefGoogle Scholar
  78. Niwa O, Sakaguchi K, Gunge N (1981) Curing of the killer deoxyribonucleic acid plasmids of Kluyveromyces lactis. J Bacteriol 148: 988 – 990PubMedGoogle Scholar
  79. Nosek J, Tomaska L, Fukuhara H, Suyama Y, Kovâc L (1998) Linear mitochondrial genomes: 30 years down the line. TIG 14: 184 – 188PubMedCrossRefGoogle Scholar
  80. Oeser B, Tudzynski P (1989) The linear mitochondrial plasmid pCIK1 of the phytopathogenic fungus Claviceps purpurea may code for a DNA polymerase and an RNA polymerase. Mol Gen Genet 217: 132 – 140PubMedCrossRefGoogle Scholar
  81. Oeser B, Rogmann-Backwinkel P, Tudzynski P (1993) Interaction between mitochondria) DNA and mitochondrial plasmids in Claviceps purpurea: analysis of plasmid-homologous sequences upstream of the IrRNA-gene. Curr Genet 23: 315 – 322Google Scholar
  82. Otero G, Fellows J, Li Y, Bizemont T, Dirac AMG, Gustafsson CM, Erdjument-Bromage H, Tempst P, Svejstrup JQ (1999) Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol Cell 3: 109 – 118PubMedCrossRefGoogle Scholar
  83. Parentesis J, Genbauffe FS, Veldman SA, Galeotti CL, Livingston DM, Bodley JW, Murphy JR (1988) Expression of diphtheria toxin fragment A and human-toxin fusion proteins in toxin-resistant yeast mutants. Proc Natl Acad Sci USA 85: 8386 – 8390CrossRefGoogle Scholar
  84. Prescott J, Blackburn EH (1997) Telomerase RNA mutations in Saccharomyces cerevisiae alter telomerase M. Tokunaga action and reveal nonprocessivity in vivo and in vitro. Genes Dev 11: 528-540Google Scholar
  85. Pring DR, Levings CS III, Hu WWL, Timothy DH (1977) Unique DNA associated with mitochondria in the “5”-type cytoplasm of male-sterile maize. Pro Natl Acad Sci USA 74: 2904 – 2908CrossRefGoogle Scholar
  86. Réliené R, Sasnauskas K (1997) Heterologous gene expression on the linear DNA plasmids of K. lactis. Yeast S1 (13): S227Google Scholar
  87. Rohe M, Schründer J, Tudzynski P, Meinhardt F (1992) Phylogenetic relationships of linear, protein-primed replicating genomes. Curr Genet 21: 173 – 176PubMedCrossRefGoogle Scholar
  88. Romanos M, Boyd A (1988) A transcriptional barrier to expression of cloned toxin genes of the linear plasmid kl of Kluyveromyces lactis: evidence that native kl has novel promoters. Nucleic Acids Res 16: 7333 – 7350PubMedCrossRefGoogle Scholar
  89. Roy P (1992) From genes to complex structures of blue-tongue virus and their efficacy as vaccines. J Vet Microbiol 33: 155 – 168CrossRefGoogle Scholar
  90. Sakaguchi K (1990) Invertrons, a class of structurally and functionally related genetic elements that includes linear DNA plasmids, transposable elements, and genomes of adeno-type viruses. Microbiol Rev 54: 66 – 74PubMedGoogle Scholar
  91. Salas M (1991) Protein-priming of DNA replication. Annu Rev Biochem 60: 39 – 71PubMedCrossRefGoogle Scholar
  92. Salas M, Freire R, Soengas MS, Esteban JA, Méndez J, Bravo A, Serrano M, Blasco MA, Lézaro JM, Blanco L, Guitiérrez C, Hermoso JM (1995) Protein-nucleic acid interactions in bacteriophage 029 DNA replication. FEMS Microbiol Rev 17: 73 – 82PubMedGoogle Scholar
  93. Salas J, Salas ML, Vinuela E (1999) African swine fever virus: a missing link between poxviruses and iridoviruses? In: Domingo E, Webster R, Holland J (eds) Origin and evolution of viruses. Academic Press, San Diego, pp 467 – 480CrossRefGoogle Scholar
  94. Savilahti H, Bamford DH (1987) The complete nucleotide sequence of the left very early region of Escherichia coli bacteriophage PRD1 coding for the terminal protein and the DNA polymerase. Gene 57: 121130Google Scholar
  95. Schaffrath R, Breunig KD (2000) Genetics and molecular physiology of the yeast Kluyveromyces lactis. Fungal Genet Biol 30: 173 – 190PubMedCrossRefGoogle Scholar
  96. Schaffrath R, Meacock PA (1995) Kluyveromyces lactis killer plasmid pGKL2: molecular analysis of an essential gene, ORF5. Yeast 11: 615 – 628Google Scholar
  97. Schaffrath R, Meacock PA (1996) A cytoplasmic gene-shuffle system in Kluyveromyces lactis: use of epitope tagging to detect a killer plasmid-encoded gene product. Mol Microbiol 19: 545 – 554PubMedCrossRefGoogle Scholar
  98. Schaffrath R, Meacock PA (2001) An SSB encoded by and operating on linear killer plasmids from Kluyveromyces lactis. Yeast 18: 1239 – 1247PubMedCrossRefGoogle Scholar
  99. Schaffrath R, Stark MJR, Gunge N, Meinhardt F (1992) Kluyveromyces lactis killer system: ORF1 of pGKL2 has no function in immunity expression and is dispensable for killer plasmid replication and maintenance. Curr Genet 21: 357 – 363Google Scholar
  100. Schaffrath R, Soond SM, Meacock PA (1995a) Cytoplasmic gene expression in yeast: a plasmid-encoded transcription system in Kluyveromyces lactis. Biochem Soc Trans 23: 128SGoogle Scholar
  101. Schaffrath R, Soond SM, Meacock PA (1995b) The DNA and RNA polymerase genes of yeast plasmid pGKL2 are essential loci for plasmid integrity and maintenance. Microbiology 141: 2591 – 2599PubMedCrossRefGoogle Scholar
  102. Schaffrath R, Meinhardt F, Meacock PA (1996) Yeast killer plasmid pGKL2: molecular analysis of UCS5, a cytoplasmic promoter element essential for ORF5 gene function. Mol Gen Genet 250: 286 – 294PubMedCrossRefGoogle Scholar
  103. Schaffrath R, Meinhardt F, Meacock PA (1997) ORF7 of yeast plasmid pGKL2: analysis of gene expression in vivo. Curr Genet 31: 190 – 192PubMedCrossRefGoogle Scholar
  104. Schaffrath R, Meinhardt F, Meacock PA (1999) Genetic manipulation of Kluyveromyces lactis linear DNA plasmids: gene targeting and plasmid shuffles. FEMS Microbiol Lett 172: 201 – 210CrossRefGoogle Scholar
  105. Schaffrath R, Sasnauskas K, Meacock PA (2000) Use of gene shuffles to study the cytoplasmic transcription system operating on Kluyveromyces lactis linear DNA plasmids. Enzme Microb Technol 26: 664 – 670CrossRefGoogle Scholar
  106. Schardl CL, Pring DR, Lonsdale DM (1985) Mitochondrial DNA rearrangements associated with fertile revertants of S-type male-sterile maize. Cell 43: 361368Google Scholar
  107. Schickel J, Helmig C, Meinhardt F (1996) Kluyveromyces lactis killer system: analysis of cytoplasmic promoters of linear plasmids. Nucleic Acids Res 24: 1879 – 1886Google Scholar
  108. Schründer J, Meinhardt F (1995) An extranuclear expression system for analysis of cytoplasmic promoters of yeast linear killer plasmids. Plasmid 33: 139 – 151PubMedCrossRefGoogle Scholar
  109. Schründer J, Gunge N, Meinhardt F (1996) Extranuclear expression of the bacterial xylose isomerase (xylA) and the UDP-glucose dehydrogenase (hasB) genes in yeast using Kluyveromyces lactis linear killer plasmids as vectors. Curr Microbiol 33: 323 – 330PubMedCrossRefGoogle Scholar
  110. Sinclair JH, Stevens BJ, Sanghavi P, Rabinowitz M (1967) Mitochondrial satellite and circular DNA filaments in yeast. Science 156: 1234 – 1237PubMedCrossRefGoogle Scholar
  111. Singer MS, Gottschling DE (1994) TLCI: template RNA component of Saccharomyces cerevisiae telomerase. Science 266: 404 – 409Google Scholar
  112. Sleep D, Belfield GP, Goodey AR (1990) The secretion of human serum albumin from the yeast Saccharomyces cerevisiae using five different leader sequences. Bio Technol 8: 42 – 46Google Scholar
  113. Sor F, Fukuhara H (1985) Structure of a linear plasmid of the yeast Kluyveromyces lactis: compact organization of the killer genome. Curr Genet 9: 147 – 155CrossRefGoogle Scholar
  114. Stahl U, Lemke PA, Tudzynski P, Kück U, Esser K (1978) Evidence for plasmid like DNA in a filamentous fungus, the ascomycete Podospora anserina. Mol Gen Genet 162: 341 – 342PubMedCrossRefGoogle Scholar
  115. Stam JC, Kwakman J, Meijer M, Stuije AR (1986) Efficient isolation of the linear DNA killer plasmid of Kluyveromyces lactis: evidence for location and expression in the cytoplasm and characterization of their terminally bound proteins. Nucleic Acids Res 14: 6871 – 6884PubMedCrossRefGoogle Scholar
  116. Stark MJR, Boyd A (1986) The killer toxin of Kluyveromyces lactis: characterization of the toxin subunits and identification of the genes which encode them. Embo J 5: 1995 – 2002PubMedGoogle Scholar
  117. Stark MJR, Mileham AJ, Romanos MA, Boyd A (1984) Nucleotide sequence and transcription analysis of a linear DNA plasmid associated with the killer character of the yeast Kluyveromyces lactis. Nucleic Acids Res 12: 6011 – 6030PubMedCrossRefGoogle Scholar
  118. Stark MJR, Boyd A, Mileham A, Romanos MA (1990) The plasmid-encoded killer system of Kluyveromyces lactis: a review. Yeast 6: 1 – 29PubMedCrossRefGoogle Scholar
  119. Stillman BW, Tamanoi F, Mathews MB (1982) Purification of an adenovirus-coded DNA polymerase that is required for initiation of DNA replication. Cell 31: 613 – 623PubMedCrossRefGoogle Scholar
  120. Sugisaki Y, Gunge N, Sakaguchi K, Yamasaki M, Tamura G (1984) Characterization of a novel killer toxin encoded by a double-stranded linear DNA plasmid of Kluyveromyces lactis. Eur J Biochem 141: 241 – 245PubMedCrossRefGoogle Scholar
  121. Sugisaki Y, Gunge N, Sakaguchi K, Yamasaki M, Tamura G (1985) Transfer of DNA killer plasmids from Kluyveromyces lactis to Kluyveromyces fragilis and Candida pseudotropicalis. J Bacteriol 164: 1373 – 1375PubMedGoogle Scholar
  122. Takano H, Kuroiwa T, Kawano S (1997) Mitochondrial fusion promoting plasmid. Cell Struct Funct 22: 299 – 308PubMedCrossRefGoogle Scholar
  123. Takata H, Gunge N (2001) Progressive alteration of telomeric sequences at one end of a yeast linear plasmid and its possible association with reduced plasmid stability. Mol Gen Genom 266: 686 – 694CrossRefGoogle Scholar
  124. Takata H, Fukuda K, Meinhardt F, Gunge N (2000) Telomere sequences added to nuclearly migrated yeast linear plasmid. Plasmid 43: 137 – 143PubMedCrossRefGoogle Scholar
  125. Takeda M, Hiraishi H, Takesako T, Tanase S, Gunge N (1996) The terminal protein of the linear DNA plasmid pGKL2 shares an N-terminal domain of the plasmidencoded DNA polymerase. Yeast 12: 241 – 246PubMedCrossRefGoogle Scholar
  126. Takita MA, Castilho-Valavicius B (1993) Absence of cell wall chitin in Saccharomyces cerevisiae leads to resistance to Kluyveromyces lactis killer toxin. Yeast 9: 589 – 598PubMedCrossRefGoogle Scholar
  127. Tanguy-Rougeau C, Chen XJ, Wésolowski-Louvel M, Fukuhara H (1990) Expression of a foreign KmR gene in linear killer DNA plasmids in yeast. Gene 91: 43 – 50PubMedCrossRefGoogle Scholar
  128. Tiggemann M, Jeske S, Larsen M, Meinhardt F (2001) Kluyveromyces lactis cytoplasmic pGKL2: heterologous expression of Orf3p and proof of guanylyltransferase and mRNA-triphosphatase activities. Yeast 18: 815 – 825Google Scholar
  129. Tokunaga M, Wada N, Hishinuma F (1987a) A novel yeast secretion vector utilizing secretion signal of killer toxin encoded on the yeast linear DNA plasmid pGKL1. Biochem Biophys Res Commun 144: 613 – 619PubMedCrossRefGoogle Scholar
  130. Tokunaga M, Wada N, Hishinuma F (1987b) Expression and identification of immunity determinants on liner DNA killer plasmids pGKL1 and pGKL2 in Kluyveromyces lactis. Nucleic Acids Res 15: 1031 – 1046PubMedCrossRefGoogle Scholar
  131. Tokunaga M, Wada N, Hishinuma F (1988) A novel yeast secretion signal isolated from 28K killer precursor protein encoded on the linear DNA plasmid pGKL1. Nucleic Acids Res 16: 7499 – 7511PubMedCrossRefGoogle Scholar
  132. Tokunaga M, Kawamura A, Hishinuma F (1989) Expression of pGKL killer 28 K subunit in Saccharomyces cerevisiae: identification of 28K subunit as a killer protein. Nucleic Acids Res 17:3435-3446 Google Scholar
  133. Tokunaga M, Kawamura A, Kitada K, Hishinuma F (1990) Secretion of killer toxin encoded on the linear DNA plasmid GKL1 from Saccharomyces cerevisiae. J Biol Chem 265: 17274 – 17280PubMedGoogle Scholar
  134. Tokunaga M, Kawamura A, Yonekyu S, Kishida M, Hishinuma F (1993) Secretion of mouse a-amylase from fission yeast Schizosaccharomyces pombe: presence of chymostatin-sensitive protease activity in the culture medium. Yeast 9: 379 – 387PubMedCrossRefGoogle Scholar
  135. Tokunaga M, Ishibashi M, Tatsuda D, Tokunaga H (1997) Secretion of mouse a-amylase from Kluyveromyces lactis. Yeast 13:699-706 Google Scholar
  136. Tommasino M (1991) Killer system of Kluyveromyces lactis: the open reading frame 10 of the pGKL2 plasmid encodes a putative DNA binding protein. Yeast 7:245-252 Google Scholar
  137. Tommasino M, Ricci S, Galeotti CL (1988) Genome organization of the killer plasmid pGKL2 from Kluyveromyces lactis. Nucleic Acids Res 16: 5863 – 5878PubMedCrossRefGoogle Scholar
  138. Tomoike K, Ekino K, Takeshita M, Goto M, Yoshino S, Fukuda K, Gunge N, Furukawa K (1998) Cytoplasmic expression of the Aspergillus glucoamylase gene integrated into a linear plasmid in Saccharomyces cerevisiae. J Ferm Bioeng 86:296-300Google Scholar
  139. Trilla JA, Cos T, Duran A, Roncero C (1997) Characterization of CHS4 (CAL2) a gene of Saccharomyces cerevisiae involved in chitin biosynthesis and allelic to SKT5 and CSD4. Yeast 13:795-807Google Scholar
  140. Vierula PJ, Bertrand H (1992) A deletion derivative of the kalilo senescence plasmid forms hairpin and duplex DNA structures in the mitochondria of Neurospora. Mol Gen Genet 234:361-368Google Scholar
  141. Volkert FC, Wilson DW, Broach JR (1989) Deoxyribonucleic acid plasmids in yeasts. Microbiol Rev 53: 299317Google Scholar
  142. Wésolowski-Louvel M, Fukuhara H (1990) A palindromic mutation of the linear killer plasmid k2 of yeast. Nucleic Acids Res 18: 4877 – 4882PubMedCrossRefGoogle Scholar
  143. Wésolowski M, Algeri A, Goffrini P, Fukuhara H (1982a) Killer DNA plasmids of the yeast Kluyveromyces lactis. I. Mutations affecting the killer phenotype. Curr Genet 5:191-197Google Scholar
  144. Wésolowski M, Algeri A, Fukuhara H (1982b) Killer DNA plasmids of the yeast Kluyveromyces lactis. III. Plasmid recombination. Curr Genet 5: 205-208Google Scholar
  145. Wésolowski-Louvel M, Tanguy-Rougeau C, Fukuhara H (1988) A nuclear gene required for the expression of the linear DNA-associated killer system in the yeast Kluyveromyces lactis. Yeast 4: 71 – 81PubMedCrossRefGoogle Scholar
  146. Wilson DW, Meacock PA (1988) Extranuclear gene expression in yeast: evidence for a plasmid-encoded RNA polymerase of unique structure. Nucleic Acids Res 16: 8097 – 8112PubMedGoogle Scholar
  147. Winkler GS, Petrakis TG, Ethelberg S, Tokunaga M, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2001) RNA polymerase II Elongator holoenzyme is composed of two discrete subcomplexes. J Biol Chem 276: 32743 – 32749PubMedCrossRefGoogle Scholar
  148. Worsham PL, Bolen PL (1990) Killer toxin production in Pichia acaciae is associated with linear DNA plasmids. Curr Genet 18: 77 – 80PubMedCrossRefGoogle Scholar
  149. Yajima H, Tokunaga M, Nakayama-Murayama A, Hishinuma H (1997) Characterization of IKI1 and IK13 genes conferring pGKL killer sensitivity on Saccharomyces cerevisiae. Biosci Biotech Biochem 61:704-709Google Scholar
  150. Yasui A, Langeveld SA (1985) Homology between the photoreactivation genes of Saccharomyces cerevisiae and Escherichia coli. Gene 36:349-355Google Scholar
  151. Yoshikawa H, Ito J (1982) Nucleotide sequence of the major early region of bacteriophage 029. Gene 17: 323335Google Scholar
  152. Zakian VA (1995) Saccharomyces telomeres: function, structure and replication. In: Blackburn EH, Greider CW (eds) Telomerases. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 107 – 137Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • N. Gunge
    • 1
  • M. Tokunaga
    • 2
  1. 1.Microbiological TechnologySojo UniversityKumamotoJapan
  2. 2.Applied and Molecular MicrobiologyKagoshima UniversityKagoshimaJapan

Personalised recommendations