# Descriptive Set Theory and Topology

• M. M. Choban
Chapter
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 51)

## Abstract

In this article we present the foundations of the descriptive theory of sets and topological spaces. One of the most important directions of descriptive set theory is the study of the interdependence between the internal structure of sets and operations by means of which they are constructed starting from sets of a simpler nature. Analyses of operations over sets are also related to this line of approach. The general theory of operations over sets is at the interface between the abstract and descriptive theories of sets. The study of arbitrary sets of the real line did not lead to any definite results. As is well known, Cantor’s Continuum Hypothesis CH, which asserts that every subset of the real line is either countable or has the cardinality of the continuum c = 2No, can neither be proved nor disproved. Open sets and closed sets of the real line are either countable or have cardinality of the continuum. At the beginning of the twenties it was natural to look for a solution of the Continuum Hypothesis by considering more general classes of sets of the real line. For F σ -sets, an affirmative solution of the problem is trivial. In 1906 Young gave an affirmative solution to the problem for G δσ -sets, and Hausdorff in 1914 gave an affirmative solution for G δσδσ -sets. A complete affirmative solution for all B-sets was found by P.S. Alexandroff and Hausdorff in 1916. The Alexandroff-Hausdorff method was based on the definition of an A-operation and the theorem on representing B-sets as the result of an A-operation over an array of closed sets. This fact convincingly illustrates the value of the theory of operations over sets. It should be noted that many results of descriptive set theory turn out to be particular cases of more general theorems on families of sets generated by certain operations.

## Keywords

Topological Space Irrational Number Descriptive Theory Reduction Principle Baire Class
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. Addison, J.W. (1959): Some consequences of the axiom of constructibility. Fundam. Math. 46, 337–357.
2. Alexandroff, P. (1924): Sur les ensembles complémentaires aux ensembles (A). Fun-dam. Math. 5, 160–165.
3. Alexandroff, P.S. (1978): The theory of functions of a real variable and the theory of topological spaces. Collected Works, Nauka, Moscow (in Russian). Zbl. 516. 01019Google Scholar
4. Alexandroff, P.S., Urysohn, P.S. (1971): Memoirs on Compact Topological Spaces. Nauka, Moscow (in Russian). Zbl. 228. 54017Google Scholar
5. Arhangel’skii, A.V. (= Arkhangel’skii, A.V.) (1976): On some topological spaces that occur in functional analysis. Usp. Mat. Nauk 31, No. 5, 17–32. [English transl.: Russ. Math. Surv. 31, No. 5, 14–30Google Scholar
6. Arhangel’skii, A.V. (1986): Hurewicz spaces, analytic sets and fan tightness of spaces of functions. Dokl. Akad. Nauk SSSR 287, No. 3, 525–528. [English transl • Sov. Math., Dokl. 33, 396–399]. Zbl. 606. 54013Google Scholar
7. Arhangel’skii, A.V. (1987a): Algebraic objects generated by a topological structure. Itogi Nauki Tekh., Ser. Algebra, Topologia, Geom. 25, 141–198. [English transl.: J. Sov. Math. 45, No. 1, 956–990 (1989)]. Zbl. 631. 22001Google Scholar
8. Arhangel’skii, A.V. (1988): Cantor’s set theory. Izdat. Mosk. Univ. ( in Russian ). Zbl. 651. 04001Google Scholar
9. Arhangel’skii, A.V., Fedorchuk, V.V. (1988): General Topology I: Fundamental Concepts and Constructions of General Topology. Itogi Nauki Tekh., Ser. Sovrem. Probi. Mat., Fundam. Napravleniya 17, 5–110. [English transl.: Encycl. Math. Sci. 17, 1–90. Springer-Verlag, Berlin Heidelberg New York 1990]. Zbl. 653. 54001Google Scholar
10. Arhangel’skii, A.V., Filippov, V.V. (1973): Spaces with bases of finite rank. Mat. Sb., Nov. Ser. 87, No. 2, 147–158. [English transi.: Math. USSR, Sb. 16, 147–158 (1972)]. Zbl. 235. 54016Google Scholar
11. Baire, R. (1889): Sur les fonctions de variables réelles. Ann. Mat. 3, 1–123. FdM. 30, 359Google Scholar
12. Barwise, J. (ed.) (1977): Handbook of Mathematical Logic. Part 2. Set Theory. North-Holland, Amsterdam. Zbl. 433. 03001Google Scholar
13. Barwise, J. (ed.) (1978): Handbook on Mathematical Logic. Part 2. Set Theory in: Studies in Logic and the Foundations of Mathematics, Vol.90. North-Holland, Amsterdam New York Oxford, 2nd printing. Zbl. 443.03001Google Scholar
14. Cantor, G. (1932): Gesammelte Abhandlungen, Springer, Berlin Heidelberg New York. Zbl. 4, 54Google Scholar
15. Chernayskij, A.V. (1962): A remark on Shnejder’s theorem on the existence in perfectly normal bicompacta of an A-set that is not a B-set. Vestn. Mosk. Univ., Ser. I, No. 2, 20 (in Russian). Zbl. 108, 354Google Scholar
16. Choban, M.M. (1969a): On Baire sets. Second Tiraspol’ Symposium on General Topology and its Applications, Kishinev, 87–90Google Scholar
17. Choban, M.M. (1969b): Many-valued maps and spaces with a countable net. Dokl. Akad. Nauk SSSR 186, No. 5, 1023–1026. [English transl.: Soy. Math., Dokl. 10, 716–719]. Zbl. 194, 235Google Scholar
18. Choban, M.M. (1970a): On the completion of topological groups. Vestn. Mosk. Univ., Ser. I 25, No. 1, 33–38. [English transl.: Mosc. Univ. Math. Bull. 25, No. 1–2, 23–26 (1972)]. Zbl. 205, 42Google Scholar
19. Choban, M.M. (1970b): On Baire sets in complete topological spaces. Ukr. Mat. Zh. 22, No. 3, 330–342. [English transl • Ukr. Math. J. 22, 286–295 (1971)]. Zbl. 212, 271Google Scholar
20. Choban, M.M. (1970c): Many-valued maps and Borel sets I. Tr. Mosk. Mat. 0.-va 22, 229–250. [English transl.: Trans. Mosc. Math. Soc. 22, 258–280 (1972)]. Zbl. 231. 54013Google Scholar
21. Choban, M.M. (1970d): Many-valued maps and Borel sets II. Tr. Mosk. Mat. 0.-va 23, 277–301. [English transl • Trans. Mosc. Math. Soc. 23, 286–310 (1972)]. Zbl. 231. 54013Google Scholar
22. Choban, M.M. (1972): On B-measurable sections. Dokl. Akad. Nauk SSSR 207, No. 1, 48–51. [English transl.: Sov. Math. Dokl. 13, 1473–1477]. Zbl. 284. 54009Google Scholar
23. Choban, M.M. (1973a): Descriptive set theory. C. R. Acad. Bulg. Sci. 26, No. 4, 449–452.
24. Choban, M.M. (1973b): Spaces with bases of rank one. Izv. Akad. Nauk Mold. SSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 3, 12–19.Google Scholar
25. Choban, M.M. (1974): Continuous images of complete spaces. Tr. Mosk. Mat. O.-va 30, 23–59. [English transl.: Trans. Mosc. Math. Soc. 30, 25–63 (1976)]. Zbl. 355. 54033Google Scholar
26. Choban, M.M. (1975a): Modification of topologies and non-emptiness of classes. Serdica 1, 133–143.
27. Choban, M.M. (1975b): On operations over sets. Sib. Mat. Zh., 16, 1332–1351. [English transi.: Sib. Math. J. 16, 1024–1039 (1976)]. Zbl. 325. 04003Google Scholar
28. Choban, M.M. (1978): General section theorems and their applications. Serdica, 4, 74–90
29. Choban, M.M. (1982): Algebras and some questions of the theory of maps. General Topology and its Relations to Modern Analysis and Algebra: Proc. Fifth Prague Symp. 1981, Sigma Ser. Pure Math. 3, 86–97Google Scholar
30. Choban, M.M. (1984): Baire isomorphisms and Baire topologies. Solution of a problem of Comfort. Dokl. Akad. Nauk SSSR 279, No. 5, 1056–1060. [English transl.: Sov. Math., Dokl. 30, 780–784]. Zbl. 598. 54002Google Scholar
31. Choban, M.M. (1986): Generalized homeomorphisms of compact groups. Serdica 12, 80–87
32. Choban, M.M., Kenderov, P.S. (1985): Dense Gâteaux differentiability of the sup-norm in C(T) and the topological properties of T. C. R. Acad. Bulg. Sci. 38, No. 12, 1603–1604.
33. Choquet, G. (1955): Theory of capacities. Ann. Inst. Fourier 5, 131–295.
34. Choquet, G. (1959): Ensembles K-analytiques et K-sousliniens. Cas général et cas métrique. Ann. Inst. Fourier 9, 75–81.
35. Cohen, P.J. (1966): Set Theory and the Continuum Hypothesis. Benjamin, New York. Zbl. 182, 13Google Scholar
36. Comfort, W.W., Ross, K.A. (1966): Pseudocompactness and uniform continuity in topological groups. Pac. J. Mat. 16, No. 3, 483–496.
37. Ellin, A.G. (1967): A-sets in complete metric spaces. Dokl. Akad. Nauk 175, No. 3, 517–520. [English transl.: Sov. Math., Dokl. 8, 874–877]. Zbl. 168, 437Google Scholar
38. Engelking, R. (1968): Selectors of the first Baire class for semicontinuous set-valued functions. Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys. 14, No, 4, 277–282.
39. Engelking, R. (1977): General Topology. PWN, Warsaw. Zbl. 373. 54001Google Scholar
40. Filippov, V.V. (1967): On a perfect image of a p-paracompactum. Dokl. Akad. Nauk SSSR 176, No. 3, 777–780. [English transl.: Sov. Math., Dokl. 8, 1151–1153]. Zbl. 167, 512Google Scholar
41. Frolik, Z. (1970): Absolute Borel and Souslin sets. Pac. Math. J. 32, No. 4, 663–683.
42. Frolik, Z. (1970): A survey of separable descriptive theory of sets and spaces. Czech. Math. J. 20 (95), 406–467.
43. Hausdorff, F. (1914): Grundzüge der Mengenlehre. Leipzig. FdM. 45, 123Google Scholar
44. Kanovej, V.G. (1985): Development of descriptive set theory under the influence of the work of N.N. Luzin Usp. Mat. N. UK 40, No. 3, 117–155. [English transi.: Russ. Math. Surv. 40, No. 3, 135–180]. Zbl. 578. 01022Google Scholar
45. Kanovej, V.G., Ostrovskij, A.V. (1981): Non-Borel Fu-sets. Dokl. Akad. Nauk SSSR 260, No. 5, 1061–1064. [English transl • Sov. Math., Dokl. 24, 386–389]. Zbl. 499. 03041Google Scholar
46. Kantorovich, L.V., Livenson, E.M. (1932): Memoir on analytical operations and projective sets. Fundam. Math. 18, 214–279.Google Scholar
47. Kantorovich, L.V., Livenson, E.M. (1933): Memoir on analytical operations and projective sets. II. Fundam. Math. 20, 54–97.Google Scholar
48. Katetov, M. (1972): On descriptive classes of functions, in: Theory of Sets and Topology. VEB Deutscher. Verlag Wissensch., Berlin, 256–278. Zbl. 265. 54014Google Scholar
49. Keldysh, L.V. (1945): Structure of B-sets. Tr. Mat. Inst. Steklova 17 (in Russian)Google Scholar
50. Keldysh, L.V. (1945): On open mappings of A-sets. Dokl. Akad. Nauk SSSR 49, No. 5, 622–624.
51. Kolmogorov, A.N. (1928): On operations over sets. Mat. Sb. 35, 415–421 (in Russian). FdM. 54, 94Google Scholar
52. Kondô, M. (1937): L’uniformisation des complémentaires analytiques. Proc. Imp. Acad. Jap. 13, 287–291.
53. Kozlova, Z.I. (1940): On certain plane A- and B-sets. Izv. Akad. Nauk SSSR, Ser. Mat. 4, 479–500 (in Russian). Zbl. 24, 302Google Scholar
54. Kozlova, Z.I. (1951): Splitting of certain B-sets. Izv. Akad. Nauk SSSR, Ser. Mat. 15, 279–296 (in Russian). Zbl. 42, 53Google Scholar
55. Kozlova, Z.I. (1968): Projective sets in topological spaces of weight T. Dokl. Akad. Nauk SSSR 183, No. 1, 37–40. [English transl.: Soy. Math., Dokl. 9, 1326–1329]. Zbl. 198, 552Google Scholar
56. Kozlova, Z.I. (1970): R-operations with a completely deep chain over systems of sets of power T. Dokl. Akad. Nauk SSSR 193, No. 3, 521–524. [English transl.: Soy. Math. Dokl. 11, 964–968]. Zbl. 234. 04008Google Scholar
57. Kozlova, Z.I. (1972): B-sets of certain topological spaces of uncountable weight. Izv. Vyssh. Uchebn. Zaved., Mat. No. 7 (122), 53–54.
58. Kuratowski, K. (1966): Topology I. Academic Press, New York, new edition, revised and augmented. Zbl. 158,408. First edition: Warsaw and Lvov, 1933 (in French). Zbl. 8,132Google Scholar
59. Kuratowski, K., Maitra, A. (1974): Some theorems on selectors and their applications to semicontinuous decomposition. Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys. 22, 877–881.
60. Kuratowski, K., Ryll-Nardzewski, C. (1965): A general theorem on selectors. Bull. Acad. Pol. Sci., Ser. Sci., Math. Astron. Phys. 13, 397–403.
61. Lebesgue, H. (1905): Sur les fonctions représentables analytiquement. J. Math. Pures et Appl. 1, No. 2, 139–216. FdM. 36, 453Google Scholar
62. Levy, A. (1970): Definability in axiomatic set theory. II. Math. Logic Found. Set Theory. Proc. Int. Colloqu., Jerusalem 1968, 129–145. Zbl. 218. 02056Google Scholar
63. Luzin, N.N. (1953): Lectures on Analytic Sets and Their Applications. GITTL, Moscow (in Russian). Zbl. 51, 291Google Scholar
64. Luzin, N.N. (1958): Collected Works, Vol. 2, Izdat. Akad. Nauk SSSR, Moscow (in Russian). Zbl. 88, 262Google Scholar
65. Lyapunov, A.A. (1979): Questions of Set Theory and Function Theory. Nauka, Moscow (in Russian). Zbl. 498. 01009Google Scholar
66. Lyubetskij, V.A. (1968): Some corollaries of the hypothesis of noncountability of the set of constructible real numbers. Dokl. Akad. Nauk SSSR 182, No. 4, 758–759. [English transl.: Sov. Math., Dokl. 9, 1195–1196]. Zbl. 177, 14Google Scholar
67. Lyubetskij, V.A. (1970): The existence of a nonmeasurable set of type A2 implies the existence of an uncountable set which does not contain a perfect set of type CA. Dokl. Akad. Nauk SSSR 195, No. 3, 548–550. [English transl.: Sov. Math., Dokl. 11, 1513–1515]. Zbl. 258. 02063Google Scholar
68. Maitra, A., Rao, B.V. (1975): Selection theorems and the reduction principle. Trans. Am. Math. Soc. 202, 57–66.
69. Meyer, P.A. (1966): Probability and Potentials. Baisdell, London. Zbl. 138, 104Google Scholar
70. Michael, E. (1959): A theorem on semi-continuous set-valued functions. Duke Math. J. 26, No. 4, 647–652.
71. Michael, E., Stone, A.H. (1969): Quotients of the spaces of irrationals. Pac. J. Math. 28, 629–633.
72. Moschovakis, Y.N. (1980): Descriptive Set Theory. North-Holland, Amsterdam. Zbl. 433. 03025Google Scholar
73. Neumann, J. (1949): On rings of operators, reduction theory. Ann. Math., II. Ser. 50, 401–485.
74. Novikov, P.S. (1979): Theory of Sets and Functions. Mathematical Logic and Algebra. Collected Works. Nauka, Moscow. Zbl. 485. 01027Google Scholar
75. Ochan, Yu.S. (1941): A generalized A-operation. Dokl. Akad. Nauk SSSR 33, No. 6, 393–395 (in Russian). Zbl. 60, 128Google Scholar
76. Ochan, Yu.S. (1955): Theory of operations over sets. Usp. Mat. Nauk 10, No. 3, 71–128 (in Russian). Zbl. 64, 289Google Scholar
77. Ostrovskij, A.V. (1986): On a question of L.V. Keldysh on the structure of Borel sets. Mat. Sb. 131, No. 3, 323–346. [English transi.: Math. USSR, Sb.59, No. 2, 317–337 (1988)]. Zbl. 629. 54025Google Scholar
78. Parovichenko, I.I. (1969): On the descriptive theory of sets in topological spaces. Second Tiraspol’ Symposium on General Topology and its Applications. Shtiintsa, Kishinev, 55–56Google Scholar
79. Parovichenko, I.I. (1971): On the descriptive theory of sets in topological spaces. Dokl. Akad. Nauk SSSR 196, No. 5, 1024–1027. [English transl.: Sov. Math., Dokl. 12, 316–320]. Zbl. 224. 54062Google Scholar
80. Parovichenko, I.I. (1981): Theory of Operations over Sets. Shtiintsa, KishinevGoogle Scholar
81. Pasynkov, B.A. (1962): On the equivalence of different definitions of dimension of quotient spaces of locally bicompact groups. Usp. Mat. Nauk 17, No. 5(107), 129–135 (in Russian). Zbl. 166, 144Google Scholar
82. Ponomarev, V.I. (1966): Borel sets in perfectly normal bicompacta. Dokl. Akad. Nauk SSSR 170, No. 3, 520–523. [English transl.: Sov. Math., Dokl. 7, 1236–1239]. Zbl. 169, 542Google Scholar
83. Rogers, C.S., Jayne, T.E., Dellacherie, C., TopsOe, F., Hoffman-Torgensen, J., Martin, D.A., Kechris, A.S., Stone, A.H. (1980): Analytic Sets. Academic Press, London. Zbl. 451. 04001Google Scholar
84. Rokhlin, V.A. (1949a): Selected questions of the metric theory of dynamical systems. Usp. Mat. Nauk 4, No. 2, 57–128 (in Russian). Zbl. 32, 284Google Scholar
85. Rokhlin, V.A. (1949b): Fundamental concepts of measure theory. Mat. Sb. 25, No. 1, 107–150 (in Russian). Zbl. 33, 169Google Scholar
86. Saks, S. (1930): Theory of the Integral. Warsaw. [French transi.: Monografje Matematyczne, Subw. Fund. Kult. Narod, Warsaw 1933. Zbl. 7.105; English transi.: Stechest and Co., New York 1937. Zbl. 17,300]Google Scholar
87. Selivanovskij, V.S. (1928): On a class of effective sets. Mat. Sb. 35, No. 3–4, 379–412 (in Russian). FdM. 54, 94Google Scholar
88. Shchegol’kov, E.A. (1943): Uniformization of B-sets. Dokl. Akad. Nauk SSSR 59, No. 6, 1065–1066 (in Russian). Zbl. 35, 323Google Scholar
89. Shchegol’kov, E.A. (1973): Uniformization of sets of certain classes. Tr. Mat. Inst. Steklova 133, 251–262. [English transl.: Proc. Steklov. Inst. Math. 133, 255–265 (1977)]. Zbl. 296. 04004Google Scholar
90. Shnejder, V.E. (1948): Descriptive set theory in topological spaces. Uch. Zap. Mosk. Gos. Univ., Ser. Mat. 135, No. 11, 37–85 (in Russian)Google Scholar
91. Sierpinski, W. (1926): Sur une propriété des ensembles (A). Fundam. Math. 8, 362369. FdM. 52, 201Google Scholar
92. Sierpinski, W. (1935): Sur un problème de M. Kolmogoroff. Mt. Sb., Nov. Ser. 1, No. 3, 303–306 (in Russian). Zbl. 15, 103Google Scholar
93. Sion, M. (1960): On analytic sets in topological spaces. Trans. Am. Math. Soc. 96, 341–354.
94. Souslin, M. (1917): Sur une définition des ensembles mesurables B sans nombres transfinis. C. R. Acad. Sci., Paris 164, 88–91. FdM. 46, 296Google Scholar
95. Stone, A.H. (1962): Absolute Fo-spaces. Proc. Am. Math. Soc. 13, 495–499. Zbl. 108, 356Google Scholar
96. Stone, A.H. (1962): Non-separable Borel sets. Rozpr. Math. 28, 1–45. Zbl. 105,165 Stone, A.H. (1972): Non-separable Borel sets. Gen. Topol. Appl. 2, 249–270. Zbl. 245. 54039Google Scholar
97. Tajmanov, A.D. (1953): Quasicomponents of disconnected sets. Usp. Mat. Nauk. 8, No. 2, 162–163Google Scholar
98. Tajmanov, A.D. (1955a): Open mappings of Borel sets. Mat. Sb., Nov. Ser. 37, No. 2, 293–300 (in Russian). Zbl. 59, 159Google Scholar
99. Tajmanov, A.D. (1955b): On closed mappings. I. Mat. Sb., Nov. Ser. 36, No. 2, 349–352 (in Russian). Zbl. 64, 169Google Scholar
100. Tajmanov, A.D. (1960). On closed mappings. II. Mat. Sb. 52, No. 1, 579–588.
101. Tajmanov, A.D. (1973): On certain works related to the descriptive theory of sets and topology. Tr. Mat. Inst. Steklova 133, 203–213. [English transl.: Proc. Steklov. Inst. Math 133, 216–222 (1977)]. Zbl. 296. 54013Google Scholar
102. Talagrand, M. (1979): Espaces de Banach faiblement K-analytiques. Ann. Math., II. Ser. 110, 407–438.Google Scholar
103. Uspenskij, V.V. (1985): The contribution of N.N. Luzin to the descriptive theory of sets and functions; concepts, problems, predictions. Usp. Mat. N. UK 40, No. 3, 85–116. [English transi.: Russ. Math. Surv. 40, No. 3, 97–134]. Zbl. 578. 01021Google Scholar
104. Wagner, D.H. (1977): Survey of measurable selection theorems. SIAM J. Control Optimization 15, No. 5, 859–903.
105. Yankov, V. (1941): Uniformization of A- and B-sets. Dokl. Akad. Nauk SSSR 30, No. 7, 597–598 (in Russian). Zbl. 24, 385Google Scholar

## Authors and Affiliations

• M. M. Choban

There are no affiliations available