Advertisement

Spaces of Mappings and Rings of Continuous Functions

  • A. V. Arhangel’skii
Chapter
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 51)

Abstract

Passing to the limit in a set of functions is one of the most frequently encountered phenomena in mathematics. We meet it in the theory of differential equations, functional analysis, algebraic topology, differential geometry, probability theory, and in the various applications of these and other areas of mathematics.

Keywords

Pointwise Convergence Metrizable Space Countable Base Linear Topological Space Baire Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandroff, P.S., Pasynkov, B.A. (1973): Introduction to Dimension Theory. Nauka, Moscow. Zbl. 272. 54028Google Scholar
  2. Amir, D., Lindenstraiiss, J. (1968): The structure of weakly compact sets in Banach spaces. Ann. Math., II. Ser. 88, No. 1, 35–46. Zbl. 164, 149Google Scholar
  3. Arens, R., Dugundji, J. (1951): Topologies for function spaces. Pac. J. Math. 1, No. 1, 5–31. Zbl. 44, 118Google Scholar
  4. Arhangel’skii, A.V. (= Arkhangel’skii, A.V.)(1959): An addition theorem for the weight of sets lying in bicompacta. Dokl. Akad. Nauk SSSR 126, No. 2, 239–241 (in Russian). Zbl. 87, 376Google Scholar
  5. Arhangel’skii, A.V. (1976): On certain topological spaces encountered in functional analysis. Usp. Mat. Nauk 31, No. 5, 17–32.MathSciNetGoogle Scholar
  6. Arhangel’skii, A.V. (1976): English transi.: Russ. Math. Surv. 31, No. 5, 14–30. Zbl. 344. 46058Google Scholar
  7. Arhangel’skii, A.V. (1982): On linear homeomorphisms of function spaces. Dokl. Akad. Nauk SSSR 264, No. 6, 1289–1292.MathSciNetGoogle Scholar
  8. Arhangel’skii, A.V. (1982): English transi.: Soviet Math., Dokl. 25, 852–855. Zbl. 522. 54015Google Scholar
  9. Arhangel’skii, A.V. (1984a): Continuous maps, factorization theorems and function spaces. Tr. Mosk. Mat. 0: va 47, 3–21.Google Scholar
  10. Arhangel’skii, A.V. (1984a): English transi.: Trans. Mosc. Math. Soc. 1985, 1–22 (1985). Zbl. 588. 54018Google Scholar
  11. Arhangel’skii, A.V. (1984b): Function spaces in the topology of pointwise convergence and compacta. Usp. Mat. Nauk 39, No. 5, 11–50.Google Scholar
  12. Arhangel’skii, A.V. (1984b): English transl.: Russ. Math. Surv. 39, No. 5, 9–56. Zbl. 568. 54016Google Scholar
  13. Arhangel’skii, A.V. (1985): Function spaces in the topology of pointwise convergence. Part I, in: General Topology: Function Spaces and Dimension, Collect. Work, Moscow 3–66 (in Russian). Zbl. 638. 54015Google Scholar
  14. Arhangel’skii, A.V. (1987): A survey of Cr-theory. Quest. Answers General Topology 5, 1–109 (in Russian). Zbl. 634. 54012Google Scholar
  15. Arhangel’skii, A.V. (1988): Some results and problems in Cr-theory. Proc. 6th Symp., Prague/Czech 1986, Reg. Expo. Math. 16, 11–31. Zbl. 658. 54013Google Scholar
  16. Arhangel’skii, A.V. (1989a): Topological Function Spaces. Izdat. Mosk. Gos. Univ., Moscow (in Russian) Zbl. 781. 54014Google Scholar
  17. Arhangel’skii, A.V. (1989b): General Topology II: Compactness. Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. Fundam. Napravleniya 50, 5–128.Google Scholar
  18. Arhangel’skii, A.V. (1989b): English transl. in: Encycl. Math. Sci. 50. Springer-Verlag, Berlin Heidelberg New York 1995. Zbl. 709. 54018Google Scholar
  19. Arhangel’skii, A., Choban, M.M. (1988): The extension property of Tychonoff spaces and generalized retracts. C. R. Acad. Bulg. Sci. 41, No. 12, 5–7. Zbl. 675. 54014Google Scholar
  20. Arhangel’skii, A.V., Ponomarev, V.I. (1974): Fundamentals of General Topology in Problems and Exercises. Nauka, Moscow (in Russian). Zbl. 287. 54001Google Scholar
  21. Arhangel’skii, A.V., Tkachuk, V.V. (1985): Function Spaces and Topological Invariants. Izdat Mosk. Gos. Univ., Moscow (in Russian)Google Scholar
  22. Baars, J., de Groot, J. (1988): An isomorphical classification of function spaces of zero-dimensional locally compact separable metric spaces. Commentat. Math. Univ. Carol. 29, No. 3, 577–595. Zbl. 684. 54011Google Scholar
  23. Banach, S. (1932): Théorie des Opérations Linéaires. PWN, Warsaw. Zbl. 5,209 Baturov, D.P. (1987): Subspaces of function spaces. Vestn. Mosk. Univ., Ser. I, No. 4, 66–69.Google Scholar
  24. Banach, S. (1932): English transl.: Mosc. Univ. Math. Bull. 42, No.4, 75–78 (1987). Zbl. 626. 54022Google Scholar
  25. Benyamini, Y., Rudin, M.E., Wage, M. (1977): Continuous images of weakly compact subsets of Banach spaces. Pac. J. Math. 70, No. 2, 309–324. Zbl. 374. 46011Google Scholar
  26. Borges, C.J.R. (1966): On stratifiable spaces. Pac. J. Math. 17, No. 1, 1–16. Zbl. 175, 198Google Scholar
  27. Choban, M.M., Dodon, N.K. (1979): Theory of P-Scattered Spaces. Shtiintsa, Kishinev (in Russian). Zbl. 506. 54029Google Scholar
  28. Christensen, J.P.R. (1981): Joint continuity of separately continuous functions. Proc. Am. Math. Soc. 82, No. 3, 455–461. Zbl. 472. 54007Google Scholar
  29. Corson, H.H. (1959): Normality in subsets of product spaces. Am. J. Math. 81, 785–796. Zbl. 95, 373Google Scholar
  30. Dijkstra, J., Grillot, T., Lutzer, D., van Mill, J. (1985): Function spaces of low Borel complexity. Proc. Am. Math. Soc. 94, No. 4, 703–710. Zbl. 564. 54007Google Scholar
  31. van Douwen, E.K. (1975): Simultaneous linear extension of continuous functions. General Topology Appl. 5, 297–319. Zbl. 309. 54013Google Scholar
  32. Dranishnikov, A.N. (1986): Absolute F-valued retracts and function spaces in the topology of pointwise convergence. Sib. Mat. Zh. 27, No. 3, 74–86.MathSciNetGoogle Scholar
  33. Dranishnikov, A.N. (1986): English transl.: Sib. Math. J. 27, 366–376 (1976). Zbl. 622. 54027Google Scholar
  34. Dugundji, J. (1966): Topology. Allyn and Bacon, Inc. XVI. Zbl. 144, 215Google Scholar
  35. Engelking, R. (1977): General Topology. PWN, Warsaw. Zbl. 373. 54001Google Scholar
  36. Filippov, V.V. (1980): On the existence of solutions of differential equations. Colloq. Math. Soc. Janos Bolyai 23. North-Holland, New York, 397–411. Zbl. 433. 34005Google Scholar
  37. Fréchet, M. (1906): Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo 22, 1–74. FdM. 37, 348Google Scholar
  38. Gel’fand, I.M., Kolmogorov, A.N. (1939): On rings of continuous functions on topological spaces. Dokl. Akad. Nauk SSSR 22, No. 1, 11–15. Zbl. 21, 411Google Scholar
  39. Gillman, L., Jerison, M. (1960): Rings of Continuous Functions. van Nostrand, New York. Zbl. 93, 300Google Scholar
  40. Gul’ko, S.P. (1979): On the structure of spaces of continuous functions and their hereditary paracompactness. Usp. Mat. Nauk 34, No. 6, 33–40.MathSciNetzbMATHGoogle Scholar
  41. Gul’ko, S.P. (1979): English transi.: Russ. Math. Surv. 34, No. 6, 36–44. Zbl. 421. 46020Google Scholar
  42. Gul’ko, S.P., Khmylëva, T.E. (1986): Compactness is not preserved under the t-equivalence relation. Mat. Zametki 39, No. 6, 895–903.MathSciNetGoogle Scholar
  43. Gul’ko, S.P., Khmylëva, T.E. (1986): English transi.: Math. Notes 39, 484–488. Zbl. 629. 54007Google Scholar
  44. Heath, R.W., Lutzer, D.J., Zenor, P.L. (1973): Monotonically normal spaces. Trans. Am. Math. Soc. 178, 481–493. Zbl. 269. 54009Google Scholar
  45. Hewitt, E. (1948): Rings of real-valued continuous functions. I. Trans. Am. Math. Soc. 64, 45–99. Zbl. 32, 286Google Scholar
  46. Hochster, M. (1969): Prime ideal structure in commutative rings. Trans. Am. Math. Soc. 142, 43–60. Zbl. 184, 294Google Scholar
  47. Isbell, J.R. (1964): Uniform Spaces. Math. Surv. 12. Providence, RI. Am. Math. Soc. XI. Zbl. 124, 156Google Scholar
  48. Kadets, M.I. (1967): Proof of the topological equivalence of all separable infinite-dimensional Banach spaces. Funkts. Anal. Prilozh. 1, No. 1, 61–70zbMATHGoogle Scholar
  49. Kadets, M.I. (1967): English transi: Funct. Anal Appl. 1, No. 1, 53–62. Zbl. 166, 106Google Scholar
  50. Kelley, J.L. (1955): General Topology. van Nostrand, New York. Zbl. 66, 166Google Scholar
  51. Khelemskij, A.Ya. (1986): Homology in Banach and Topological Algebras. Izdat. Mosk. Gos. Univ., Moscow. Zbl. 608. 46046Google Scholar
  52. Kolmogorov, A.N., Fomin, S.V. (1968): Elements of the Theory of Functions and Functional Analysis. Nauka, Moscow (in Russian). Zbl. 167, 421Google Scholar
  53. Lutzer, D., van Mill, J., Pol, R. (1985): Descriptive complexity of function spaces. Trans. Am. Math. Soc. 291, No. 1, 121–128. Zbl. 574. 54042Google Scholar
  54. McCoy, R.A., Ntantu, I. (1988): Topological properties of spaces of continuous functions. Lect. Notes Math. 1315. Zbl. 674. 54001Google Scholar
  55. Michael, E. (1966): lao-spaces. J. Math. Mech. 15, 983–1002. Zbl. 148, 167Google Scholar
  56. van Mill, J. (1982): A homogeneous Eberlein compact space which is not metrizable. Pac. J. Math. 101, No. 1, 141–146. Zbl. 495. 54020Google Scholar
  57. Nagata, J. (1949): On lattices of functions on topological spaces and of functions on uniform spaces. Osaka J. Math. 1, No. 2, 166–181. Zbl. 36, 386Google Scholar
  58. Namioka, I. (1974): Separate continuity and joint continuity. Pac. J. Math. 51, 515–531. Zbl. 294. 54010Google Scholar
  59. Negrepontis, S. (1984): Banach spaces and topology, in: Handbook of Set-theoretic Topology. North-Holland, New York, 1045–1142. Zbl. 584. 46007Google Scholar
  60. Oxtoby, J.C. (1971): Measure and Category. Springer-Verlag, New York. Zbl. 217, 92Google Scholar
  61. Pavlovskij, D.S. (1980): Spaces of continuous functions. Dokl. Akad. Nauk SSSR 253, No. 1, 38–41.MathSciNetGoogle Scholar
  62. Pavlovskij, D.S. (1980): English transl.: Sov. Math., Dokl. 22, 34–37. Zbl. 489. 54011Google Scholar
  63. Pelczynski, A. (1968): Linear Extensions, Linear Averagings, and their Applications. Diss. Math. 58. Zbl. 165, 146Google Scholar
  64. Pestov, V.G. (1982): Coincidence of the dimensions dim of /-equivalent spaces. Dokl. Akad. Nauk SSSR 266, No. 3, 553–556.MathSciNetGoogle Scholar
  65. Pestov, V.G. (1982): English transl.: Sov. Math., Dokl. 26, 380–383] Zbl. 518. 54030Google Scholar
  66. Pol, R. (1986): Note on compact sets of first Baire class functions. Proc. Am. Math. Soc. 96, No. 1, 152–154. Zbl. 584. 54014Google Scholar
  67. Preiss, D., Simon, P. (1974): A weakly pseudocompact subspace of Banach space is weakly compact. Commentat. Math. Univ. Carol. 15, No. 4, 603–609. Zbl. 306. 54033Google Scholar
  68. Roitman, J. (1984): Basic S and L, in: Handbook of Set-theoretic Topology. North-Holland, New York, 295–326. Zbl. 594. 54001Google Scholar
  69. Rosenthal, H.P. (1970): On injective Banach spaces and the spaces L°°(µ) for finite measures A. Acta Math. 124, No. 3, 205–248. Zbl. 207, 428Google Scholar
  70. Rosenthal, H.P. (1977): Pointwise compact subsets of the first Baire class. Am. J. Math. 99, No. 2, 362–378. Zbl. 392. 54009Google Scholar
  71. Rudin, W. (1973): Functional Analysis. McGraw-Hill, New York. Zbl. 253. 46001Google Scholar
  72. Semadeni, Z. (1971): Banach Spaces of Continuous Functions. I. PWN, Warsaw. Zbl. 225. 46030Google Scholar
  73. Shchepin, E.V. (1977): A finite-dimensional bicompact absolute neighbourhood retract is metrizable. Dokl. Akad. Nauk SSSR 233, No. 2, 304–307.MathSciNetGoogle Scholar
  74. Shchepin, E.V. (1977): English transl.: Sov. Math., Dokl. 18, 402–406. Zbl. 372. 54031Google Scholar
  75. Sikorski, R. (1964): Boolean Algebras. Springer-Verlag, New York. Zbl. 123, 13Google Scholar
  76. Sokolov, G.A. (1986): Lindelöf spaces of continuous functions. Mat. Zametki 39, No. 6, 887–894.MathSciNetGoogle Scholar
  77. Sokolov, G.A. (1986): English transl: Math. Notes 39, 480–484. Zbl. 607. 54012Google Scholar
  78. Stone, M.H. (1937): Applications of the theory of Boolean rings to general topology. Trans. Am. Math. Soc. 41, 375–481. Zbl. 17, 135Google Scholar
  79. Stone, M.H. (1947): The generalized Weierstrass approximation theorem. Math. Mag. 21, 167–184, 237–254Google Scholar
  80. Talagrand, M. (1979): Espaces de Banach faiblement K-analytiques. Ann. Math., II. Ser. 110, No. 3, 407–438. Zbl. 414. 46015Google Scholar
  81. Tall, F.D. (1984): Normality versus collectionwise normality, in: Handbook of Set-theoretic Topology. North-Holland, New York, 685–732. Zbl. 552. 54011Google Scholar
  82. Tkachuk, V.V. (1983): Cardinal invariants of Souslin number type. Dokl. Akad. Nauk SSSR 270, No. 4, 795–798.MathSciNetGoogle Scholar
  83. Tkachuk, V.V. (1983): English transi.: Soy. Math., Dokl. 27, 681–684. Zbl. 539. 54001Google Scholar
  84. Torunczyk, H. (1981): Characterizing Hilbert space topology. Fundam. Math. 111, No. 3, 247–262. Zbl. 468. 57015Google Scholar
  85. Uspenskij, V.V. (1983): On the topology of a free locally convex space. Dokl. Akad. Nauk SSSR 270, No. 6, 1334–1337.MathSciNetGoogle Scholar
  86. Uspenskij, V.V. (1983): English transl.: Sov. Math., Dokl. 27, 781785. Zbl. 569. 54015Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • A. V. Arhangel’skii

There are no affiliations available

Personalised recommendations