Advertisement

Paracompactness and Metrization. The Method of Covers in the Classification of Spaces

  • A. V. Arhangel’skii
Chapter
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 51)

Abstract

The problem of metrization of topological spaces has had an enormous influence on the development of general topology. Singling out the basic topological components of metrizability has determined the main reference points in the construction of the classification of topological spaces. These are (primarily) paracompactness, collectionwise normality, monotonic normality and perfect normality, the concepts of a stratifiable space, Moore space and σ-space, point-countable base, and uniform base. The method of covers has taken up a leading role in this classification. Of paramount significance in the applications of this method have been the properties of covers relating to the character of their elements (open covers, closed covers), the mutual disposition of these elements (star finite, point finite, locally finite covers, etc.), as well as the relations of refinement between covers (simple refinement, refinement with closure, combinatorial refinement, star and strong star refinement). On this basis a hierarchy of properties of paracompactness type has been singled out, together with the classes of spaces corresponding to them, the most important of which is the class of paracompacta.

Keywords

Open Cover Baire Property Paracompact Space Uniform Base Countable Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandroff, P.S. (1960): On metrization of topological spaces. Bull. Pol. Acad. Sci.,Ser. Sci. Math. Astron. Phys. 8, No. 3, 135–140. Zbl. 124, 379Google Scholar
  2. Alexandroff, P.S., Niemytskii, V.V. (1938): Metrizability conditions of topological spaces and the axiom of symmetry. Mat. Sb., Nov. Ser. 3, 663–672 (in Russian). Zbl. 19, 135Google Scholar
  3. Alster, K., Zenor, P. (1976): On the collectionwise normality of generalized manifolds. Topol. Proc. 1, Conf. Auburn Univ. 1976, 125–127. Zbl. 389. 54013Google Scholar
  4. Antonovskij, M.Ya., Boltyanskij, V.G. (1970): Tychonoff semifields and certain problems of general topology. Usp. Mat. Nauk 25, No.3(153), 3–48. Zbl. 194,544. [English transi.: Russ. Math. Surv. 25, No. 3, 1–43 (1970)]Google Scholar
  5. Arhangel’skii, A.V. (= Arkhangel’skii, A.V.) (1960): On metrization of topological spaces. Bull. Pol. Acad. Sci., Ser. Sci., Math. Astron. Phys. 8, No.9, 589–595. Zbl. 131, 205Google Scholar
  6. Arhangel’skii, A.V. (1961): On Cech-complete topological spaces. Vestn. Mosk. Univ., Ser. I 16, No.2, 37–40 (in Russian). Zbl. 106, 157Google Scholar
  7. Arhangel’skii, A.V. (1963): Certain metrization theorems. Usp. Mat. Nauk 18, No.5, 139–145 (in Russian). Zbl. 128, 167Google Scholar
  8. Arhangel’skii, A.V. (1965): On a class of spaces containing all metric and all locally bicompact spaces. Mat. Sb., Nov. Ser. 67, No.1, 55–85. [English transl.: Transl. II. Ser., Am. Math. Soc. 92, 1–39 (1970)]. Zbl. 127, 131Google Scholar
  9. Arhangel’skii, A.V. (1966): Mappings and spaces. Usp. Mat. Nauk 21, No.4, 133–184. [English transl.: Russ. Math. Surv. 21, No.4, 115–162]. Zbl. 171, 436Google Scholar
  10. Arhangel’skii, A.V. (1973): On hereditary properties. General Topology Appl. 3, No.1, 39–46. Zbl. 264. 54004Google Scholar
  11. Arhangel’skii, A.V. (1980): Some properties of radial spaces. Mat. Zametki 27, No.1, 95–104. [English transi.: Math. Notes 27, 50–54]. Zbl. 434. 54004Google Scholar
  12. Arhangel’skii, A.V. (1986): On R-quotient mappings of spaces with a countable base. Dokl. Akad. Nauk SSSR 287, No.1, 14–17. [English transi.: Soy. Math., Dokl. 33, 302–305]. Zbl. 616. 54008Google Scholar
  13. Arhangel’skii, A.V. (1987a): Algebraic objects generated by a topological structure. Itogi Nauki Tekh., Ser. Algebra, Topologiya, Geom. 25, 141–198. [English transi.: J. Sov. Math. 45, No.1, 956–990 (1989)]. Zbl. 631. 22001Google Scholar
  14. Arhangel’skii, A.V. (1987b): A survey of Cr-theory. Quest. Answers General Topology 5, 1–109. Zbl. 634. 54012Google Scholar
  15. Arhangel’skii, A.V. (1989a): General Topology II: Compactness. Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. Fundam. Napravleniya 50, 5–128. [English transl. in: Encycl. Math. Sci. 50. Springer-Verlag, Berlin Heidelberg New York 1995]. Zbl. 709. 54018Google Scholar
  16. Arhangel’skii, A.V. (1989b): Topological Function Spaces. Izdat. Moskov. Univ., Moscow (in Russian). Zbl. 781. 54014Google Scholar
  17. Arhangel’skii, A.V., Ponomarev, V.I. (1974): Fundamentals of General Topology in Problems and Exercises. Nauka, Moscow (in Russian). Zbl. 287. 54001Google Scholar
  18. Arhangel’skii, A.V., Fedorchuk, V.V. (1988): General Topology I: Fundamental Concepts and Constructions of General Topology. Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. Fundam. Napravleniya 17, 5–110. [English transi.: Encycl. Math. Sci. 17, 1–90. Springer-Verlag, Berlin Heidelberg New York 1990]. Zbl. 653. 54001Google Scholar
  19. Balogh, Z. (1981): On the metrizability of Frp spaces and its relationship to the normal Moore space conjecture. Fundam Math. 113, No.1, 47–58. Zbl. 472. 54017Google Scholar
  20. Balogh, Z. (1984): On hereditarily strong E-spaces. Topology Appl. 17, No.2, 199215. Zbl. 531. 54036Google Scholar
  21. Berney, E.S. (1970): A regular Lindelöf semi-metric space which has no countable network. Proc. Am. Math. Soc. 26, 361–364. Zbl. 198, 556Google Scholar
  22. Bing, R.H. (1951): Metrization of topological spaces. Can. J. Math. 3, 175–186. Zbl. 42, 413Google Scholar
  23. Borges C.J.R. (1966): On stratifiable spaces. Pac. J. Math. 17, No.1, 1–16. Zbl. 175, 198Google Scholar
  24. Borges C.J.R. (1968): On metrizability of topological spaces. Can. J. Math. 20, 795–804. Zbl. 167, 212Google Scholar
  25. Burke, D.J. (1984): Covering properties, in: Handbook of Set-theoretic Topology. North-Holland, New York, 347–422. Zbl. 569. 54022Google Scholar
  26. Cech, E. (1937): On bicompact spaces. Ann. Math., II. Ser. 38, No.2, 823–844. Zbl. 17, 428Google Scholar
  27. Ceder, J.G. (1961): Some generalizations of metric spaces. Pac. J. Math. 11, 105–125. Zbl. 103, 391Google Scholar
  28. Choban, M.M. (1967): Some metrization theorems for p-spaces. Dokl. Akad. Nauk SSSR 173, 1270–1272. [English transi.: Sov. Math., Dokl. 8, 561–563]. Zbl. 157, 535Google Scholar
  29. Choban, M.M., Dodon, N.K. (1979): Theory of P-scattered Spaces. Shtiintsa, Kishinev (in Russian). Zbl. 506. 54029Google Scholar
  30. Christensen, J.P.R. (1974): Topology and Borel Structure. North-Holland, New York. Zbl. 273. 28001Google Scholar
  31. Corson, H.H. (1959): Normality in subsets of product spaces. Am. J. Math. 81, 785–796. Zbl. 95, 373Google Scholar
  32. Creede, G.D. (1970): Concerning semi-stratifiable spaces. Pac. J. Math. 32, 47–54. Zbl. 189, 233Google Scholar
  33. Daniels, P. (1983): Normal locally compact boundedly metacompact spaces are para-compact. Can. J. Math. 35, 807–823. Zbl. 526. 54009Google Scholar
  34. Dieudonné, J. (1944): Une généralization d’espaces compacts. J. Math. Pures Appl., IX. Sér. 23, 65–76. Zbl. 60, 395Google Scholar
  35. Douwen, E.K. van (1980): Covering and separation properties for box products, in: Surveys in General Topology. Academic Press, New York, 55–129. Zbl. 453. 54005Google Scholar
  36. Douwen, E.K. van (1975): Simultaneous linear extension of continuous functions. General Topology Appl. 5, 297–319. Zbl. 309. 54013Google Scholar
  37. Dowker, C.H. (1951): On countably paracompact spaces. Can. J. Math. 3, 219–224. Zbl. 42, 410Google Scholar
  38. Dranishnikov, A.N. (1978): Simultaneous annihilation of families of closed sets, icmetrizable and stratifiable spaces.Google Scholar
  39. Dokl. Akad. Nauk SSSR 243, No.5, 1105–1108. [English transi.: Sov. Math., Dokl. 19, 1466–1469]. Zbl. 427. 54019Google Scholar
  40. Dugundji, J. (1966): Topology. Allyn and Bacon, Inc. XVI. Zbl. 144, 215Google Scholar
  41. Engelldng, R. (1977): General Topology. PWN, Warsaw. Zbl. 373. 54001Google Scholar
  42. Filippov, V.V. (1967): On the perfect image of a paracompact p-space. Dokl. Akad.Google Scholar
  43. Nauk SSSR 176 533–535. [English transi • Sov. Math., Dokl. 8 1151–1153]. Zbl.Google Scholar
  44. 167.
    Nauk SSSR 176 533–535. [English transi • Sov. Math., Dokl. 8 1151–1153]. Zbl.Google Scholar
  45. Fleissner, W.G. (1974): Normal Moore spaces in the constructible universe. Proc. Am. Math. Soc. 46, 294–298. Zbl. 314. 54028Google Scholar
  46. Fleissner, W.G. (1976): A normal collectionwise Hausdorff not collectionwise normal space. General Topol. Appl. 6, 57–64. Zbl. 348. 54011Google Scholar
  47. Fleissner, W.G. (1978): Current research on Q-sets. Colloq. Math. Soc. Janos Bolyai 23, 413–431. Zbl. 446. 54029Google Scholar
  48. Fleissner, W.G. (1984): The normal Moore space conjecture and large cardinals, in: Handbook of Set-theoretic Topology. North-Holland, New York, 733–760. Zbl. 562. 54039Google Scholar
  49. Foged, L. (1984): Characterizations of 11-spaces. Pac. J. Math. 110, No. 1, 59–63. Zbl. 542. 54030Google Scholar
  50. Frolik, Z. (1960): On the topological product of paracompact spaces. Bull. Pol. Acad. Sci., Ser. Sci. Math. Astron. Phys. 8, 747–750. Zbl. 99, 386Google Scholar
  51. Frolik, Z. (1961): On approximation and uniform approximation of spaces. Proc. Japan Acad. 37, 530–532. Zbl. 106, 157Google Scholar
  52. Gruenhage, G. (1976a): Stratifiable spaces are M2. Topology Proc., Vol.1, Conf. Auburn Univ. 1976, 221–226. Zbl. 389. 54019Google Scholar
  53. Gruenhage, G. (1976b): Continuously perfectly normal spaces and some generalizations. Trans. Am. Math. Soc. 224, No.2, 323–338. Zbl. 343. 54009Google Scholar
  54. Gruenhage, G. (1984): Generalized metric spaces, in: Handbook of Set-theoretic Topology. North-Holland, New York, 423–501. Zbl. 555. 54015Google Scholar
  55. Gruenhage, G., Nyikos, P. (1978): Spaces with bases of countable rank. General Topology Appl. 8, No.3, 233–257. Zbl. 412. 54034Google Scholar
  56. Heath, R.W. (1964): Screenability, pointwise paracompactness and metrization of Moore spaces. Can. J. Math. 16, 763–770. Zbl. 122, 174Google Scholar
  57. Heath, R.W. (1965): On spaces with point-countable bases. Bull. Pol. Acad. Sci., Ser. Sci. Math. Astron. Phys. 13, No.3, 393–395. Zbl. 132, 184Google Scholar
  58. Heath, R.W. (1966): A paracompact semimetric space which is not an M3-space. Proc. Am. Math. Soc. 17, 868–870. Zbl. 151, 302Google Scholar
  59. Heath, R.W. (1970): An easier proof that a certain countable space is not stratifiable, in: Proc. Wash. St. Univ. Conf. Gen. Top., 56–59. Zbl. 197, 485Google Scholar
  60. Heath, R.W., Lutzer, D.J., Zenor, P.L. (1973): Monotonically normal spaces. Trans. Am. Math. Soc. 178, 481–493. Zbl. 269. 54009Google Scholar
  61. Hodel, R. (1972): Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points. Duke Math. J. 39, 253–263. Zbl. 242. 54027Google Scholar
  62. Hodel, R. (1975): On a theorem of Archangel’skii concerning Lindelöf p -spaces. Can. J. Math. 27, No.3, 459–468. Zbl. 301. 54010Google Scholar
  63. Isiwata, T. (1987): Metrization of additive k-metric spaces. Proc. Am. Math. Soc. 100, No.1, 164–168. Zbl. 612. 54033Google Scholar
  64. Jones, F.B. (1937): Concerning normal and completely normal spaces. Bull. Am. Math. Soc. 43, 671–677. Zbl. 17, 429Google Scholar
  65. Juhasz, I. (1976): A generalization of nets and bases. Period. Math. Hung. 7, No.2, 183–193. Zbl. 346. 54003Google Scholar
  66. Junnila, B.J.K. (1979): Paracompactness, metacompactness and semi-open covers. Proc. Am. Math. Soc. 73, 244–248. Zbl. 404. 54016Google Scholar
  67. Katuta, J. (1974): On spaces which admit closure preserving covers by compact sets. Proc. Japan Acad. 50, 826–828. Zbl. 329. 54016Google Scholar
  68. Kelley, J.L. (1955): General Topology. van Nostrand, New York. Zbl. 66,166 Kofner, J. (1980): On quasi-metrizability. Topology, Proc. Conf. Vol.1 5, 111–138. Zbl. 508. 54024Google Scholar
  69. Lelek, A. (1969): Some cover properties of spaces. Fundam. Math. 64, No.2, 209–218. Zbl. 175, 496Google Scholar
  70. Malykhin, V.I., Ponomarev, V.I. (1975): General topology. Itogi Nauki Tekh., Ser. Algebra, Topologiya, Geom. 13, 149–229. [English transl.: J. Sov. Math. 7, 587629 (1977)]. Zbl. 434. 54001Google Scholar
  71. Michael, E. (1957): Another note on paracompact spaces. Proc. Am. Math. Soc. 8, 822–828. Zbl. 78, 148Google Scholar
  72. Michael, E. (1963): The product of a normal space and a metric space need not be normal. Bull. Am. Math. Soc. 69, 357–376. Zbl. 114, 389Google Scholar
  73. Michael, E. (1966): Ro-spaces. J. Math. Mech. 15, 983–1002. Zbl. 148, 167Google Scholar
  74. Michael, E. (1971): Paracompactness and the Lindelöf property in finite and countable Cartesian products. Compos. Math. 23, 199–214. Zbl. 216, 443Google Scholar
  75. Michael, E. (1972): A quintuple quotient quest. General Topology Appl. 2, No.1, 91–138. Zbl. 238. 54009Google Scholar
  76. Mishchenko, A.S. (1962): Spaces with point countable base. Dokl. Akad. Nauk SSSR 144, 985–988. [English transi.: Sov. Math., Dokl. 3, 855–858]. Zbl. 122, 173Google Scholar
  77. Morita, K. (1948): Star-finite coverings and star-finite property. Math. Jap. 1, 60–68. Zbl. 41, 97Google Scholar
  78. Nagami, K. (1955): Paracompactness and strong screenability. Nagoya Math. J. 8, 83–88. Zbl. 64, 411Google Scholar
  79. Nagami, K. (1969): s-spaces. Fundam. Math. 61, 169–192. Zbl. 181, 507Google Scholar
  80. Nagata, J. (1950): On a necessary and sufficient condition of metrizability. J. Inst. Polytech. Osaka City Univ. Ser. A 1, 93–100. Zbl. 41, 98Google Scholar
  81. Nagata, J. (1969): A note on M-spaces and topologically complete spaces. Proc. Japan Acad. 45, 541–543. Zbl. 191, 531Google Scholar
  82. Nedev, S.J. (1971): O-metrizable spaces. Tr. Mosk. Mat. 0.-va 24, 201–236. [EnglishGoogle Scholar
  83. transi Trans. Mosc. Math. Soc. 24, 213–247 (1974)]. Zbl. 244. 54016Google Scholar
  84. Nedev, S.J., Choban, M.M. (1968): On the metrizability of topological groups. Vestn.Google Scholar
  85. Mosk. Univ., Ser. I 23, No. 6, 18–20 (in Russian). Zbl. 185, 72Google Scholar
  86. Niemytzki, V. (1927): On the “third axiom of the metric spaces”. Trans. Am. Math. Soc. 29, 507–513. FdM. 53, 558Google Scholar
  87. Nyikos, P. (1984): The theory of nonmetrizable manifolds, in: Handbook of Settheoretic Topology. North-Holland, New York, 633–684. Zbl. 583. 54002Google Scholar
  88. O’Meara, P. (1970): A metrization theorem. Math. Nachr. 45, 69–72. Zbl. 159, 245Google Scholar
  89. Ostaszewski, A.J. (1980): Monotone normality and G6-diagonals in the class of inductively generated spaces, in: Colloq. Math. Soc. Janos Bolyai 23, No.2, 905–930. Zbl. 459. 54021Google Scholar
  90. Oxtoby, J.C. (1971): Measure and Category. Springer-Verlag, New York. Zbl. 217,92 Palenz, D.P. (1982): Monotone normality and paracompactness. Topology Appl. 14, 171–182. Zbl. 491. 54013Google Scholar
  91. Pasynkov, B.A. (1965): Almost metrizable topological groups. Dokl. Akad. Nauk SSSR 161, No.2, 281–284. [English transl.: Soy. Math., Dokl. 6, 404–406]. Zbl. 132, 278Google Scholar
  92. Peregudov, S.A. (1976): On 17-uniform bases and it-bases. Dokl. Akad. Nauk SSSR 229, No.3, 542–545. [English transl.: Sov. Math., Dokl. 17, 1055–1059]. Zbl. 353. 54003Google Scholar
  93. Phelps, R.R. (1966): Lectures on Choquet’s Theorem. van Nostrand, New York. Zbl. 135, 362Google Scholar
  94. Pol, R., Puzio-Pol, E. (1976): Remarks on Cartesian products. Fundam. Math. 93, 57–69. Zbl. 339. 54008Google Scholar
  95. Potoczny, H.B., Junnila, H. (1975): Closure preserving families and metacompactness. Proc. Am. Math. Soc. 53, 523–529. Zbl. 318. 54018Google Scholar
  96. Przymusinski, T.C. (1973): On a-discrete coverings consisting of connected sets. Colloq. Math. 27, 237–239. Zbl. 254. 54021Google Scholar
  97. Przymusinski, T.C. (1984): Products of normal spaces, in: Handbook of Set-theoretic Topology. North-Holland, New York, 781–826. Zbl. 559. 54009Google Scholar
  98. Purisch, S. (1984): Monotone normality and orderability. Quest. Answers General Topology 2, No.1, 20–23. Zbl. 545. 54013Google Scholar
  99. Pytkeev, E.G. (1980): Hereditarily plumed spaces. Mat. Zametki 28, No.4, 603–618. [English transl.: Math. Notes 28, 761–769]. Zbl. 449. 54027Google Scholar
  100. Rudin, M.E. (1971): A normal space X for which X x I is not normal. Fundam. Math. 73, 179–186. Zbl. 224. 54019Google Scholar
  101. Rudin, M.E. (1983): A normal screenable nonparacompact space. Topology Appl. 15, 313–322. Zbl. 516. 54004Google Scholar
  102. Rudin, M.E. (1984): Dowker spaces, in: Handbook of Set-theoretic Topology. North-Holland, New York, 761–780. Zbl. 554. 54005Google Scholar
  103. Rudin, M.E., Zenor, P.L. (1976): A perfectly normal nonmetrizable manifold. Houston J. Math. 2, 129–134. Zbl. 315. 54028Google Scholar
  104. Scott, B.M. (1979): Pseudocompact metacompact spaces are compact. Topology, Proc. 4, 577–587. Zbl. 449. 54020Google Scholar
  105. Shakhmatov, D.B. (1984): On pseudocompact spaces with a point-countable base. Dokl. Akad. Nauk SSSR 279, 825–829. [English transl.: Sov. Math., Dokl. 30, 747–751]. Zbl. 598. 54010Google Scholar
  106. Shakhmatov, D.B. (1987): A regular symmetrizable L-space. C. R. Acad. Bulg. Sci. 40, No.11, 5–8. Zbl. 632. 54004Google Scholar
  107. Shapirovskij, B.E. (1972): On separability and metrizability of spaces with Souslin’s condition. Dokl. Akad. Nauk SSSR 207, No.4, 800–803. [English transl.: Soy. Math., Dokl. 13, 1633–1638]. Zbl. 268. 54007Google Scholar
  108. Shchepin, E.V. (1976): Topology of limit spaces of uncountable inverse spectra. Usp. Mat. Nauk 31, No.5, 191–226. [English transl.: Russ. Math. Surv. 31, No.5, 155191]. Zbl. 345. 54022Google Scholar
  109. Shchepin, E.V. (1977): A finite-dimensional bicompact absolute neighbourhood retract is metrizable. Dokl. Akad. Nauk SSSR 233, No.2, 304–307. [English transi.: Sov. Math., Dokl. 18, 402–406]. Zbl. 372. 54031Google Scholar
  110. Shchepin, E.V. (1979): On k-metrizable spaces. Izv. Akad. Nauk SSSR, Ser. Mat. 43, No.2, 442–478.[English transi.: Math. USSR, Izv. 14, 407–440 (1980)]. Zbl. 409. 54040Google Scholar
  111. Shchepin, E.V. (1981): Functors and uncountable powers of compacta. Usp. Mat. Nauk 36, No.3, 3–62. [English transi.: Russ. Math. Surv. 36, No.3, 1–71]. Zbl. 463. 54009Google Scholar
  112. Shirokov, L.V. (1982): Extrinsic characterization of Dugundji spaces and k-metrizable bicompacta. Dokl. Akad. Nauk SSSR 263, 1073–1077. [English transi.: Sov. Math., Dokl. 25, 507–510]. Zbl. 515. 54019Google Scholar
  113. Smirnov, Yu.M. (1951): Metrization of topological spaces. Usp. Mat. Nauk 6, No.6, 100–111 (in Russian). Zbl. 45, 117Google Scholar
  114. Steen, L.A. (1970): A direct proof that a linearly ordered space is hereditarily collectionwise normal. Proc. Am. Math. Soc. 24, 727–728. Zbl. 189, 531Google Scholar
  115. Stone, A.H. (1948): Paracompactness and product spaces. Bull. Am. Math. Soc. 54, 977–982. Zbl. 32, 314Google Scholar
  116. Stone, A.H. (1956): Metrizability of decomposition spaces. Proc. Am. Math. Soc. 7, 690–700. Zbl. 71, 160Google Scholar
  117. Suzuki, J., Tamano, K., Tanaka, Y. (1987): k-metrizable spaces and stratifiable spaces. Quest. Answers General Topology. 5, No.1, 167–171. Zbl. 633. 54014Google Scholar
  118. Tall, F.D. (1984): Normality versus collectionwise normality, in: Handbook of Settheoretic Topology. North-Holland, New York, 685–732. Zbl. 552. 54011Google Scholar
  119. Tamano, H. (1960): On paracompactness. Pac. J. Math. 10, 1043–1047. Zbl. 94,354 Tamano, H. (1962): On compactifications. J. Math. Kyoto Univ. 1, 161–193. Zbl. 106, 156Google Scholar
  120. Telgarsky, R. (1971): C-scattered and paracompact spaces. Fundam. Math. 73, 5974. Zbl. 226. 54018Google Scholar
  121. Uspenskii, V.V. (1984): Pseudocompact spaces with a a-point-finite base are metrizable. Commentat. Math. Univ. Carol. 25, No.2, 261–264. Zbl. 574. 54021Google Scholar
  122. Vaughan, J.E. (1984): Countably compact and sequentially compact spaces, in: Handbook of Set-theoretic Topology. North-Holland, New York, 569–602. Zbl. 562. 54031Google Scholar
  123. Velichko, N.V. (1973): On the cardinality of open covers of topological spaces. Fun-dam Math. 80, No.2, 271–282. Zbl. 269. 54003Google Scholar
  124. Watson, W.S. (1981): Pseudocompact metacompact spaces are compact. Proc. Am. Math. Soc. 81, No.1, 151–152. Zbl. 468. 54014Google Scholar
  125. Watson, W.S. (1982): Locally compact normal spaces in the constructible universe. Can. J. Math. 34, 1091–1096. Zbl. 502. 54016Google Scholar
  126. Wicke, H. (1971): Base of a countable order theory and some generalizations. Proc. Univ. Houston Point Set Topology Conf., 76–95 (1971). Zbl. 254. 54037Google Scholar
  127. Zenor, P.A. (1973): A metrization theorem. Colloq. Math. 27, 241–243. Zbl. 254.54034 Zenor, P.A. (1976): Some continuous separation axioms. Fundam Math. 90, No.2, 143–158. Zbl. 315. 54029Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • A. V. Arhangel’skii

There are no affiliations available

Personalised recommendations