Skip to main content

Statistical Theories for Unimolecular Rate Constant Calculation in Isolated Systems

  • Chapter
Gaseous Molecular Ions

Part of the book series: Topics in Physical Chemistry ((TOPPHYSCHEM,volume 2))

  • 140 Accesses

Abstract

The ways by which the electronic energy accumulated in molecular ions by the absorption of some 10 eV of energy excess with respect to the lowest molecular ionization energy is rapidly redistributed in the ground state molecular ion have been described in Chapter 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marcus RA (1952) Unimolecular Dissociations and Free Radical Recombination Reactions. J Chem Phys 20: 359–364

    Article  CAS  Google Scholar 

  2. Rosenstock HM, Wallenstein MB, Wahrhaftig AL, Eyring H (1952) Absolute Rate Theory for Isolated Systems and the Mass Spectra of Polyatomic Molecules. Proc Nat Acad Sci 38: 667678

    Google Scholar 

  3. Robinson PJ, Holbrook KA (1971) Unimolecular Reactions, Wiley Interscience, New York

    Google Scholar 

  4. Forst W (1973) Theory of Unimolecular Reactions. Academic, New York

    Google Scholar 

  5. Rice OK (1967) Statistical Mechanics, Thermodynamics and Kinetics. Freeman, San Fancisco

    Google Scholar 

  6. Setser DW (1966) Calculated Unimolecular Reaction Rates for Thermally and Chemically Activated Ethylene Oxide — do and — d4 and Acetaldehyde — do and — d4 Molecules. J Phys Chem 70: 826–840

    Article  CAS  Google Scholar 

  7. Doetsch G (1966) Guide to the Applications of Laplace Transforms. Saunders, Philadelphia

    Google Scholar 

  8. Wylie Jr CR (1951) Advanced Engineering Mathematics. McGraw-Hill Book Company Inc, New York

    Google Scholar 

  9. Rice OK, Rampsperger HC (1927) Theories of Unimolecular Gas Reactions at Low Pressures. J Am Chem Soc 49: 1617–1629

    Article  CAS  Google Scholar 

  10. Kassel LS (1932) Kinetics of Homogeneous Gas Reactions. Chemical Catalog Co, New York

    Google Scholar 

  11. Marcus RA, Rice OK (1951) Session of Free Radicals. The Kinetics of the Recombination of Methylradicals and Iodine Atoms. J Phys Colloid Chem 55: 894–908

    Google Scholar 

  12. Whitten GZ, Rabinovitch BS (1963) Accurate and Facile Approximation for Vibrational Energy-Level Sums. J Chem Phys, 2466–2473

    Google Scholar 

  13. Schlag EW, Sandsmark RA (1962) Computation of Statistical Complexions as Applied to Uni-molecular Reactions. J Chem Phys 37: 168–171

    Article  CAS  Google Scholar 

  14. Forst W, Prâsil Z (1969) Comparative Test of Approximations for Calculation of Energy-Level Densities. J Chem Phys 51: 3006–3012

    Article  CAS  Google Scholar 

  15. Haarhoff PC (1963) The Density of Vibrational Energy Levels of Polyatomic Molecules. Mol Phys 7: 101–117

    Article  Google Scholar 

  16. Bouma WJ, Macleod JK, Radom L (1980) An Ab Initio Molecular Orbital Study of the CH2O+. Isomers: The Stability of the Hydroxymethylene Radical Cation. Int J Mass Spectrom Ion Proc 33: 87–93

    Google Scholar 

  17. Osamura Y, Goddard JD, Schaefer III J (1981) Near Degenerate Rearrangement between the Radical Cations of Formaldehyde and Hydroxymethylene. J Chem Phys 74: 617–621

    Article  CAS  Google Scholar 

  18. Prdsil Z, Forst W (1967) Application of the Statistical Theory of Mass Spectra to the Decomposition of C2H6 and C2D6. J Phys Chem 71: 3166–3177

    Article  Google Scholar 

  19. Stockbauer R (1973) Threshold Electron-Photoion Coincidence Mass Spectrometric Study of CH4, CD4, C2H6 and C2D6. J Chem Phys 58: 3800–3815

    Article  CAS  Google Scholar 

  20. Meisels GG, Chen CT, Giessner BG, Emmel RH (1972) Energy Deposition Functions in Mass Spectrometry. J Chem Phys 56: 793–800

    Article  CAS  Google Scholar 

  21. Flamme JP, Momigny J (1978) Theoretical Study of the Metastable Peaks Corresponding to the Rotational Predissociation of the CH4 and CD4 Ions. Chem Phys 34: 303–309

    Article  CAS  Google Scholar 

  22. Illies AJ, Jarrold MF, Bowers MT (1982) Fragmentation of Metastable CH4 Ions and Isotopic Analogues. Kinetic Energy Release Distributions and Tunneling through a Rotational Barrier: Experiment and Theory. J Am Chem Soc 104: 3587–3593

    Google Scholar 

  23. Andlauer B, Ottinger Ch (1971) Unimolecular Ion Decompositions: Dependence of Rate Constants on Energy from Charge Exchange Experiments. J Chem Phys 55: 1471–1472

    Google Scholar 

  24. Baer T, Tsai BP, Smith D, Murray PT (1976) Absolute Unimolecular Decay Rates of Energy Selected Metastable Halobenzene Ions. J Chem Phys 64: 2460–2465

    Article  CAS  Google Scholar 

  25. Tsai BP, Werner AS, Baer T (1975) A Photoion-Photoelectron Coincidences ( PIPECO) Study of Fragmentation Rates and Kinetic Energy Release in Energy Selected Metastable Ions. J Chem Phys 63: 4384–4392

    Google Scholar 

  26. Vestal ML (1965) Theoretical Studies on the Unimolecular Reactions of Polyatomic Molecule Ions. I. Propane. J Chem Phys 43: 1356–1369

    Google Scholar 

  27. Eland JHD, Schulte H (1975) Unimolecular Ion Decompositions: Rate Constants as a Function of Exitation Energy. J Chem Phys 62: 3835–3836

    Google Scholar 

  28. Momigny J, Brakier L, d’Or L (1962) Comparaison entre les Effets de l’Impact Electronique sur le Benzène et sur les Isomères du Benzène en Chaîne Ouverte. Acad Roy Belgique-Bull Cl Science 48: 1002–1015

    CAS  Google Scholar 

  29. Chesnavich WJ, Bowers MT (1977) Statistical Phase Space Theory of Polyatomic Systems. Application to the Unimolecular Reactions C6HSCN + C6H4 + HCN and C4H6 C3H3 + CH3. J Am Chem Soc 99: 1705–1711

    Article  CAS  Google Scholar 

  30. Terwilliger DT, Beynon JH, Cooks FRS, Cooks RG (1974) Kinetic Energy Distributions from the Shapes of Metastable Peaks. Proc R Soc London 341A: 135–146

    Article  CAS  Google Scholar 

  31. Smyth KC, Shannon TW (1969) Energetic Metastable Decompositions. J Chem Phys 51: 46334642

    Google Scholar 

  32. Holmes JL (1977) Metastable Ion Studies (VIII): An Analytical Method for Deriving Kinetic Energy Release Distributions from Metastable Peaks. Int J Mass Spectrom Ion Proc 23: 189200

    Google Scholar 

  33. Mändli H, Robbiani R, Kuster Th, Seibl J (1979) Automatic Aquisition and Shape Analysis of Metastable Peaks. Int J Mass Spectrom Ion Proc 31: 57–64

    Article  Google Scholar 

  34. Mintz DM, Baer T (1967) Kinetic Energy Release Distributions for the Dissociation of Internal Energy Selected CH3I+ and CD3I+ Ions. J Chem Phys 65: 2407–2415

    Article  Google Scholar 

  35. Franklin JL (1976) Energy Partitioning in the Products of Ionic Decomposition. Science 193: 725–732

    Article  CAS  Google Scholar 

  36. Marcus RA (1973) General Discussion. Farad Discuss Chem Soc 55: 381

    Google Scholar 

  37. Ben-Schaul A, Haas Y, Kompa KL, Levine RD (1981) Lasers and Chemical Change. Springer Series in Chemical Physics vol 10. Springer Verlag, Berlin

    Google Scholar 

  38. Messiah A (1961) Quantum Mechanics. North Holland, Amsterdam

    Google Scholar 

  39. Kinsey JL (1971) Microscopic Reversibility for Rates of Chemical Reactions Carried out with Partial Resolution of the Product and Reactant States. J Chem Phys 54: 1206–1217

    Article  CAS  Google Scholar 

  40. Momigny J, Locht R, Caprace G (1986) Mechanism for the Appearance of H+ by Electroionization of CH4. A Surprisal Analysis. Chem Phys 102: 275–280

    Google Scholar 

  41. Forst WC (1973) Theory of Unimolecular Reactions. Academic, New York

    Google Scholar 

  42. Gorin E (1938) Photolysis of Acetaldehyde in the Presence of Iodine. Acta Physicochim USSR 9: 681–696

    CAS  Google Scholar 

  43. Bunker DL, Pattengill M (1968) Monte Carlo Calculations. VI. A Re-Evaluation of the RRKM Theory of Unimolecular Reaction Rates. J Chem Phys 48: 772–776

    Google Scholar 

  44. Marcus RA (1966) On the Theory of Chemical Reaction Cross Sections. I. A Statistical-Dynamical Model. J Chem Phys 45: 2630–2638

    Article  CAS  Google Scholar 

  45. Quack M, Troe J (1974) Specific Rate Constants of Unimolecular Processes. II. Adiabatic Channel Model. Ber Bunsenges Phys Chem 78: 240–252

    Google Scholar 

  46. Hase WL (1972) Theoretical Critical Configuration for Ethane Decomposition and Methyl Radical Recombination. J Chem Phys 57: 730–733

    Article  CAS  Google Scholar 

  47. Hase WL (1976) The Criterion of Minimum State Density in Unimolecular Rate Theory. An Application to Ethane Dissociation. J Chem Phys 64: 2442–2449

    Article  CAS  Google Scholar 

  48. Klots CE (1964) Statistical Theory of Kinetic Energy of Fragmentation in Certain Unimolecular Dissociations. J Chem Phys 41: 117–122

    Article  CAS  Google Scholar 

  49. Klots CE (1971) Reformulation of the Quasi-Equilibrium Theory of Ionic Fragmentation. J Phys Chem 75: 1526–1532

    Article  CAS  Google Scholar 

  50. Klots CE (1972) Quasi-Equilibrium Theory of Ionic Fragmentation: Further Considerations. Z Naturforsch 27a: 553–561

    CAS  Google Scholar 

  51. Klots CE (1973) Thermochemical and Kinetic Information from Metastable Decompositions of Ions. J Chem Phys 58: 5364–5367

    Article  CAS  Google Scholar 

  52. Klots CE (1973) Theory of Ionic Fragmentations: Recent Developments. Adv Mass Spectrom 6: 969–974

    Google Scholar 

  53. Klots CE (1976) Rate Constants for Unimolecular Decomposition at Threshold. Chem Phys Lett 38: 61–64

    Article  CAS  Google Scholar 

  54. Klots CE (1976) Kinetic Energy Distributions from Unimolecular Decay: Predictions of the Langevin Model. J Chem Phys 64: 4269–4275

    Article  CAS  Google Scholar 

  55. Gioumousis G, Stevenson DP (1958) Reactions of Gaseous Molecule Ions with Gaseous Molecules. V. Theory. J Chem Phys 29: 294–299

    Google Scholar 

  56. Chesnavich WJ, Bowers MT (1977) Statistical Phase Space Theory of Polyatomic Systems: Rigorous Energy and Angular Momentum Conservation in Reactions Involving Symmetric Polyatomic Species. J Chem Phys 66: 2306–2315

    Google Scholar 

  57. Light JC (1964) Phase-Space Theory of Chemical Kinetics. J Chem Phys 40:3221–3229 Pechukas P, Light JC (1965) On Detailed Balancing and Statistical Theories of Chemical Kinetics. J Chem Phys 42: 3281–3291

    Google Scholar 

  58. Light JC, Lin J (1965) Phase-Space Theory of Chemical Kinetics. II. Ion Molecule Reactions. J Chem Phys 43: 3209–3219

    Google Scholar 

  59. Pechukas P, Light JC, Rankin C (1966) Statistical Theory of Chemical Kinetics: Application to Neutral-Atom-Molecule Reactions. J Chem Phys 44: 794–805

    Google Scholar 

  60. Lin J, Light JC (1966) Phase-Space Theory of Chemical Kinetics. III. Reactions with Activation Energy. J Chem Phys 45: 2545–2559

    Google Scholar 

  61. Light JC (1967) Statistical Theory of Bimolecular Exchange Reactions. Disc Farad Soc 44: 1429

    Article  Google Scholar 

  62. Bowen RD, Stapleton J, Williams DH (1978) Non-Concerted Unimolecular Reactions of Ions in the Gas Phase: Isomerisation of Weakly Co-Ordinated Carbonium Ions. J Chem Soc Chem Comm 24–26

    Google Scholar 

  63. Heinrich N, Schwarz H (1989) Ion/Molecule Complexes as Central Intermediates in Uni-molecular Decompositions of Metastable Radical Cations of some Keto/Enol Tautomers. In: Maier JP (ed) Ion and Cluster Ion Spectroscopy and Structure. Elsevier, Amsterdam

    Google Scholar 

  64. Heinrich N, Louage F, Lifshitz C, Schwarz H (1988) Competing Reactions of the Acetone Cation Radical: RRKM-QET Calculations on an Ab Initio Potential Energy Surface. J Am Chem Soc 110: 8183–8192

    Google Scholar 

  65. Lifshitz C, Tzidony E (1981) Kinetic Energy Release Distributions for C3H6O+. Ion Dissociations: A Further Test of the Applicability of the Energy-Randomization Hypothesis to Uni-molecular Fragmentations. Int J Mass Spectrom Ion Proc 39: 181–195

    Google Scholar 

  66. Lifshitz C (1978) Unimolecular Decomposition of Polyatomic: Ions Decay Rates and Energy Disposal. Adv of Mass Spectrom 7A: 3–18

    Google Scholar 

  67. Lifshitz C (1989) Recent Developments in Applications of RRKM-QET. Adv of Mass Spectrom 11A: 713–729

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Illenberger, E., Momigny, J. (1992). Statistical Theories for Unimolecular Rate Constant Calculation in Isolated Systems. In: Gaseous Molecular Ions. Topics in Physical Chemistry, vol 2. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-07383-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07383-4_7

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-07385-8

  • Online ISBN: 978-3-662-07383-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics