Skip to main content

Instrumentation

  • Chapter
Gaseous Molecular Ions

Part of the book series: Topics in Physical Chemistry ((TOPPHYSCHEM,volume 2))

  • 140 Accesses

Abstract

The experimental methods described in Chapter 2 require light sources in the VUV region, electron monochromators and analyzers, mass spectrometers and finally detectors for the registration of the electrons and ions involved in the corresponding processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bisner J, Schnieder J, Ahlers G,Xie X, Welge KH, Ashford MNR, Dixon RN (1989) State Selective Photodissociation Dynamics of A State Ammonia, II. J Chem Phys 91: 2901–2911

    Google Scholar 

  2. Welge KH, Schmiedl R (1981) Doppler Spectroscopy of Photofragments. In: Jortner J, Levin RD, Rice SA (eds) Advances in Chemical Physics, vol XLVII. Wiley, New York

    Google Scholar 

  3. Demtröder W (1991) Laser Spektroskopie, Grundlagen und Technik. Springer, Berlin

    Google Scholar 

  4. Hutchinson MHR (1987) Excimer Lasers. In: Mollenauer LF,White JC (eds) Topics of Applied Physics, vol 59. Springer, Berlin

    Google Scholar 

  5. Kneubühl FK, Sigrist MW (1989) Laser. Teubner Studienbücher Physik, Teubner, Stuttgart

    Google Scholar 

  6. Lin SH, Fujimura Y, Neusser H, Schlag EW (1984) Multiphoton Spectroscopy of Molecules. Academic Press, Orlando

    Google Scholar 

  7. Parker DH, Berg JO, El-Sayed MA (1978) Multiphoton Ionization Spectroscopy of Polyatomic Molecules. In: Zewail AH (ed) Advances in Laser Chemistry, Springer Series in Chemical Physics, vol 3. Springer, Berlin

    Google Scholar 

  8. Letokhov VS (1987) Laser Photoionization Spectroscopy. Academic Press, New York

    Google Scholar 

  9. Brutschy B (1990) Reactions in Molecular Clusters Following Photoionization. J Phys Chem 94: 8637–8647

    Article  CAS  Google Scholar 

  10. Baer T (1989) Vacuum UV Photophysics and Photoionization Spectroscopy. Annu Rev Phys Chem 40: 637–669

    Article  CAS  Google Scholar 

  11. Morgner H (1976) Ionisation von atomarem Sauerstoff durch metastabiles Helium. Dissertation, Fakultät für Physik, Universität Freiburg

    Google Scholar 

  12. Hartman PL (1961) Improvements in a Source for Use in the Vacuum Ultraviolet. J Opt Soc Am 51: 113–114

    Article  CAS  Google Scholar 

  13. Brehm B, Siegert H (1965) Eine intensive H2-Entladungslampe für das ferne Vakuum Ultraviolett. Z Angew Phys 19: 244–246

    CAS  Google Scholar 

  14. Schlag EW, Comes FJ (1960) Intense Light Sources for the Vacuum Ultraviolet. J Opt Soc Am 50: 866–867

    Article  CAS  Google Scholar 

  15. Fehsenfeld FC, Evenson KM, Broida HP (1965) Microwave Discharge Cavities Operating at 2450 MHz. Rev Sci Instrum 36: 294–298

    Article  Google Scholar 

  16. Burger F, Maier JP (1979) “Charged Particle Oscillator” He(II) Photon Source. J Electron Spectrosc Rel Phen 16: 471–474

    Article  CAS  Google Scholar 

  17. Potts AW, Williams TA, Price WC (1973) Ultraviolet Photoelectron Data on the Complete Valence Shells of Molecules Recorded Using Filtered 30.4 nm Radiation. Discuss Faraday Soc 54: 104–115

    Google Scholar 

  18. Samson JAR (1967) Techniques of Ultraviolet Spectroscopy. Wiley, New York

    Google Scholar 

  19. Berkowitz J, (1979) Photoabsorption, Photoionization and Photoelectron Spectroscopy. Academic Press, New York

    Google Scholar 

  20. Winick H, Doniach S (eds) (1980) Synchrotron Radiation. Plenum Press, New York

    Google Scholar 

  21. Marr GV (ed) (1987) Handbook of Synchrotron Radiation, vol 2. North Holland, Amsterdam

    Google Scholar 

  22. Kunz C (ed) (1979) Synchrotron Radiation, Topics in Current Physics, vol 10. Springer, Berlin

    Google Scholar 

  23. Walker S, Straw H (1961) Spectroscopy, vols I and I I. Chapman and Hall, London

    Google Scholar 

  24. Bauman RP (1962) Absorption Spectroscopy. Wiley, New York

    Google Scholar 

  25. Born M (1972) Optik, 3. Auflage. Springer, Berlin

    Book  Google Scholar 

  26. Klein MV (1970) Optics. Wiley, New York

    Google Scholar 

  27. Namioka T (1959) Theory of the Concave Grating. III. Seya Namioka Monochromator. J Opt Soc Am 49: 951–961

    Article  Google Scholar 

  28. Ganteför G, Gansa M, Meiwes-Broer KH, Lutz HO (1988) Photoelectron Spectroscopy of Jet-Cooled Aluminum Cluster Anions. Z Phys D 9: 253–261

    Article  Google Scholar 

  29. Rademann K (1989) Photoionization Mass Spectrometry and Valence Photoelectron-Photoion Coincidence Spectroscopy of Isolated Clusters in a Molecular Beam. Ber Bunsenges Phys Chem 93: 653–670

    Article  CAS  Google Scholar 

  30. Spohr R, von Puttkamer E (1967) Energiemessung von Photoelektronen und Franck-CondonFaktoren der Schwingungsübergänge einiger Moleküle. Z Naturforsch 22a: 705–710

    CAS  Google Scholar 

  31. Frost DC, McDowell CA, Vroom DA (1967) Photoelectron Kinetic Energy Analysis in Gases by Means of a Spherical Analyser. Proc R Soc, Lond A296: 566–579

    Google Scholar 

  32. Huchital DA, Rigden JD (1972) Resolution and Sensitivity of the Spherical-Grid Retarding-Potential Analyzer: Application to Auger Electron Spectroscopy and x-Ray Photoelectron Spectroscopy. In: Shirley DA (ed) Electron Spectroscopy. North Holland, Amsterdam

    Google Scholar 

  33. Fox RE, Hickam WM, Groove JD, Kjeldaas Jr T (1955) Ionization in a Mass Spectrometer by Monoenergetic Electrons. Rev Sci Instr 26: 1101–1107

    Article  CAS  Google Scholar 

  34. Stockdale JAD, Compton RN, Reinhardt PW (1969) Studies of Negative-Ion-Molecule Reactions in the Energy Region from 0 to 3 eV. Phys Rev 184: 81–93

    Article  CAS  Google Scholar 

  35. Harrower GH (1955) Measurement of Electron Energies by Deflection in a Uniform Electric Field. Rev Sci Instrum. 26: 850–854

    Article  CAS  Google Scholar 

  36. Hughes AL, Rojansky V (1929) On the Analysis of Electronic Velocities by Electrostatic Means. Phys Rev 34: 284–290

    Article  CAS  Google Scholar 

  37. Arnow M, Jones DR (1972) Reanalysis of the Trajectories of Electrons in 127 ° Cylinder Spectrometers. Rev Sci Instrum 43: 72–75

    Article  Google Scholar 

  38. Purcell EM (1938) The Focusing of Charged Particles by a Spherical Condenser. Phys Rev 54: 818–826

    Article  CAS  Google Scholar 

  39. Kuyatt CE, Simpson JA (1967) Electron Monochromator Design. Rev Sci Instrum 38: 103–111

    Article  CAS  Google Scholar 

  40. Boness MJW, Schulz GJ (1974) Vibrational Excitation in CO2 via the 3.8 eV Resonance. Phys Rev A9: 1969–1979

    Article  CAS  Google Scholar 

  41. Daviel S, Wallbank B, Corner J, Hicks PJ (1982) Electron Energy Loss Spectroscopy of Carbon Monoxide Using a New Position-Sensitive Multidetector Spectrometer. J Phys B15: 1929–1937

    CAS  Google Scholar 

  42. Sohn W, Jung K, Erhardt H (1983) Threshold Structures in the Cross Sections of Low-Energy Electron Scattering of Methane. J Phys B16: 891–901

    CAS  Google Scholar 

  43. Hefner H, Simpson JA, Kuyatt CE (1968) Comparison of the Spherical Deflector and the Cylindrical Mirror Analyzers. Rev Sci Instrum 39: 33–35

    Article  Google Scholar 

  44. Aksela S (1971) Analysis of the Energy Distribution in Cylindrical Electron Spectrometers. Rev Sci Instrum 42: 810–812

    Article  Google Scholar 

  45. Sar-el HZ (1967) Cylindrical Capacitor as an Analyzer. Rev Sci Instrum 38: 1210–1216

    Article  Google Scholar 

  46. Sar-el HZ (1971) Cylindrical Mirror Analyzer with Surface Entrance and Exit Slits. Rev Sci Instrum 42: 1601–1606

    Article  Google Scholar 

  47. Stamatovic A, Schulz GJ (1968) Trochoidal Electron Monochromator. Rev Sci Instrum 39: 17521753

    Google Scholar 

  48. Stamatovic A, Schulz GJ (1970) Characteristics of the Trochoidal Electron Monochromator. Rev Sci Instrum 41: 423–427

    Article  Google Scholar 

  49. Allan M (1989) Study of Triplet States and Short-Lived Negative Ions by Means of Electron Impact. J Electron Spectrose Relat Phen 48: 219–351

    Article  CAS  Google Scholar 

  50. Jordan KD Burrow PB (1987) Temporary Anion States of Polyatomic Hydrocarbons. Chem Rev 87: 557–588

    Article  Google Scholar 

  51. Giordan JC, Moore JH, Tossell JA, Weber J (1983) Negative Ion States of 3d Metallocenes. J Am Chem Soc 105: 3431–3433

    Article  CAS  Google Scholar 

  52. Modelli A, Scagnolari F, Distefano G, Guerre M, Jones D (1990) Electronic Structure of TertButyl Halides and Group 14 Derivatives: Electron Affinities and Dissociative Electron Attachment. Chem Phys 145: 89–99

    Google Scholar 

  53. Oster T, Kühn A, Illenberger E (1989) Gas Phase Negative Ion Chemistry. Int J Mass Spectrom Ion Proc 89: 1–72

    Article  CAS  Google Scholar 

  54. Tronc M, Azria R, Ben Arfa M (1988) Differential Cross Section for H- and NHZ Ions in NH3. J Phys B: At Mol Phys 21: 2497–2506

    Google Scholar 

  55. OlthoffJK, Moore JH, Tossell JA (1986) Electron Attachment by Chloro-and Bromomethanes. J Chem Phys 85: 249–254

    Article  Google Scholar 

  56. Roy D (1972) Characteristics of the Trochoidal Monochromator by Calculation of Electron Energy Distribution. Rev Sci Instrum 43: 535–541

    Article  Google Scholar 

  57. Verhaart GJ, Brongersma HH (1980) Electronic Excitation (5–9 eV) in Ethylene and Some Haloethylenes by Threshold Electron-Impact Spectroscopy with an Improved Energy Resolution. Chem Phys 52: 431–442

    Article  CAS  Google Scholar 

  58. McMillan MR, Moore JH (1980) Optimization of the Trochoidal Electron Monochromator. Rev Sci Instrum 51: 944–950

    Article  Google Scholar 

  59. Tam WC, Wong SF (1979) Magnetically Collimated Electron Impact Spectrometer. Rev Sci Instrum 50: 302–307

    Article  CAS  Google Scholar 

  60. Allan M (1982) Forward Electron Scattering in Benzene: Forbidden Transitions and Excitation Functions. Heiv Chim Acta 65: 2008–2023

    Article  CAS  Google Scholar 

  61. Dressler R, Allan M (1987) A Dissociative Electron Attachment, Electron Transmission, and Electron Energy Loss Study of the Temporary Negative Ion of Acetylene. J Chem Phys 87: 45104518

    Google Scholar 

  62. Boersch H, Geiger J, Topchowsky M (1965) Rotational Structure in the Energy Loss Spectrum of H2. Phys Lett 17: 266–269

    Article  CAS  Google Scholar 

  63. Boersch H, Geiger J, Stickel W (1964) Das Auflösungsvermögen des elektrostatisch-magnetischen Energieanalysators für schnelle Elektronen. Z Physik 180: 415–424

    Article  Google Scholar 

  64. Herzog R (1934) Ionen-und elektronenoptische Zylinderlinsen and Prismen. Z Physik 89: 447473

    Google Scholar 

  65. von Ardenne M (1975) Tabellen zur Angewandten Physik, Band I. VEB Verlag, Berlin

    Google Scholar 

  66. Spohr R, Guyon PM, Chupka WA, Berkowitz J (1971) Threshold Photoelectron Detector for Use in the Vacuum Ultraviolet. Rev Sci Instrum 42: 1872–1879

    Article  CAS  Google Scholar 

  67. Peatman WB, Kasting GB, Wilson DJ(1975) The Origin and Elimination of Spurious Peaks in Threshold Electron Photoionization Spectra. J Electron Spectrosc Relat Phen 7: 233–246

    Google Scholar 

  68. Lohr W, Jochims HW, Baumgärtel H (1975) Photoreaktionen kleiner, organischer Moleküle IV. Absorptionsspektren, Photoionen-und Resonanzphotoelektronenspektren von Vinylbromid. Ber Bunsenges Phys Chem 79: 901–906

    Google Scholar 

  69. Stockbauer R, Inghram MG (1975) Threshold Photoelectron-Photoion Coincidence Mass Spectrophotometric Study of Ethylene and Ethylene-d4. J Chem Phys 62: 4862–4870

    Article  CAS  Google Scholar 

  70. Baer T (1979) State Selection by Photoion-Photoelectron Coincidence. In: Bowers MT (ed) (1979) Gas Phase Ion Chemistry, vol 2. Academic Press, New York

    Google Scholar 

  71. Baer T (1986) The Dissociation Dynamics of Energy Selected Ions. In: Prigogine I, Rice SA (eds) Adv Chem Phys, vol LXIV. Wiley, New York

    Google Scholar 

  72. Allen JD, Durham JD, Schweitzer GK, Deeds WE (1976) A New Electron Spectrometer Design. J Electron Spectrosc Relat Phen 8: 395–410

    Article  CAS  Google Scholar 

  73. Allen JD, Grimm FA (1979) High-Resolution Photoelectron Spectroscopy through Deconvolution. Chem Phys Lett 66: 72–78

    Article  CAS  Google Scholar 

  74. Lindau I, HelmerJC, Uebbing J (1973) A New Retarding Field Electron Spectrometer with Differential Output. Rev Sci Instrum 44: 265–274

    CAS  Google Scholar 

  75. Hotop H, Hübler G (1977) Photoelectron and Penning Ionization Electron Spectrometry with a Differential Retarding Field Analyzer. J Electron Spectrosc Relat Phen 11: 101–121

    Article  CAS  Google Scholar 

  76. Beamson G, Porter HQ, Turner DW (1981) Photoelectron Spectromicroscopy. Nature 290: 556561

    Google Scholar 

  77. Kruit P, Reed FH (1983) Magnetic Field Paralleliserfor2 n Electronspectrometerand Electron-Image Magnifier. J Phys E: Sci Instrum 16: 313–324

    Google Scholar 

  78. Chewter LA, Sander M, Müller-Dethlefs K, Schlag EW (1987) High Resolution Zero Kinetic Energy Photoelectron Spectroscopy of Benzene and Determination of the Ionization Potential. J Chem Phys 86: 4737–4744

    Article  CAS  Google Scholar 

  79. Müller-Dethlefs K, Sander M, Schlag EW (1984) A Novel Method Capable of Resolving Rotational Ionic States by the Detection of Threshold Photoelectrons with a Resolution of 1.2 cm-1. Z Naturforsch A39: 1089–1091

    Google Scholar 

  80. Müller-Dethlefs K, Sander M, Schlag EW (1984) Two-Colour Photoionization Resonance Spectroscopy of NO: Complete Separation of Rotational Levels of NO at the Ionization Threshold. Chem Phys Lett 112: 291–294

    Google Scholar 

  81. Neusser HJ (1989) Lifetimes of Energy and Angular Momentum Selected Ions. J Phys Chem 93: 3897–3907

    Article  CAS  Google Scholar 

  82. Samson JAR (1969) Line Broadening in Photoelectron Spectroscopy. Rev Sci Instrum 40: 11741177

    Google Scholar 

  83. Fricke J (1973) Kondensation in Düsenstrahlen. Physik in unserer Zeit 4: 21–27

    Article  Google Scholar 

  84. Anderson JB (1974) Molecular Beams for Nozzle Sources. In: Wegener PP (ed) Molecular Beams and Low Density Gas Dynamics. Dekker, New York

    Google Scholar 

  85. Miller DR (1988) Free Jet Sources. In: Scoles G (ed) Atomic and Molecular Beam Methods, vol I. Oxford University Press, New York

    Google Scholar 

  86. Maas WPM, Nibbering NMM (1989) Formation of Doubly Charged Negative Ions in the Gas Phase by Collisionally Induced “Ion Pair” Formation from Singly Charged Negative Ions. Int J Mass Spectrom Ion Proc 88: 257–266

    Article  CAS  Google Scholar 

  87. Kerwin L (1963) Ion Optics. In: McDowell CA (ed) Mass Spectrometry. McGraw-Hill, New York

    Google Scholar 

  88. Morrison JD (1986) Ion Focusing, Mass Analysis and Detection. In: Futrell JH (ed) Gaseous Ion Chemistry and Mass Spectrometry. Wiley, New York

    Google Scholar 

  89. Dempster AJ (1918) A New Method of Positive Ray Analysis. Phys Rev 11: 316–325

    Article  CAS  Google Scholar 

  90. Johnson EG, Nier AO (1953) Angular Aberrations in Sector Shaped Electromagnetic Lenses for Focusing Beams of Charged Particles. Phys Rev 91: 10–17

    Article  CAS  Google Scholar 

  91. Mattauch J, Herzog RFK (1934) Über einen neuen Massenspektrographen. Z Physik 89: 786795

    Google Scholar 

  92. Howe I, Williams DR, Bowen RD (1981) Mass Spectrometry, Principles and Applications, 2rd ed. McGraw-Hill, New York.

    Google Scholar 

  93. Beynon JH, Saunders RA, Williams AE (1965) Dissociation of Meta-Stable Ions in Mass Spectrometers with Release of Internal Energy. Z Naturforsch 20a: 180–183

    Google Scholar 

  94. Beynon JH, Cooks RG, Amy JW, Baitinger WE, RidleyTE (1973) Design and Performance of a Mass-Analyzed Ion Kinetic Energy (MIKE) Spectrometer. Anal Chem 45: A1023 - A1027

    Google Scholar 

  95. Beynon JH, Fontaine AE (1967) Mass Spectrometry: The Shapes of“Meta-Stable Peaks”, Z Naturforsch 20a: 334–346

    Google Scholar 

  96. Cooks RG, Beynon JH, Caprioli RM, Lester GR (1973) Metastable Ions. Elsevier, Amsterdam

    Google Scholar 

  97. Iraqi M, Lifshitz C (1989) Studies of Ion Clusters of Atmospheric Importance by Tandem Mass Spectrometry. Neat and Mixed Clusters Involving Methanol and Water. Int J Mass Spectrom Ion Proc 88: 45–47

    Google Scholar 

  98. Stace AJ, Shukla AK (1982) A Measurement of the Average Kinetic Energy Release During the Unimolecular Decomposition of CO2 Ion Clusters. Chem Phys Lett 85: 157–160

    Article  CAS  Google Scholar 

  99. Cameron AE, Eggers DF (1948) An Ion “Velocitron”. Rev Sci Instrum 19: 605–607

    Article  CAS  Google Scholar 

  100. Wolf HM, Stephens WE (1953) A Pulsed Mass Spectrometer with Time Dispersion. Rev Sci Instrum 24: 616–617

    Article  Google Scholar 

  101. Wiley WC, McLaren IH (1955) Time-of-Flight Mass Spectrometer with Improved Resolution. Rev Sci Instrum 26: 1150–1157

    Article  CAS  Google Scholar 

  102. Franklin JL (1979) Energy Distribution in the Decomposition of Ions. In: Bowers MT (ed) (1979) Gas Phase Ion Chemistry, vol 1. Academic Press, New York

    Google Scholar 

  103. Farmer JB (1963) Types of Mass Spectrometers. In: McDowell CA (ed) Mass Spectrometry. McGraw-Hill, New York

    Google Scholar 

  104. Boesl U, Neusser HJ, Weinkauf R, Schlag EW (1982) Muliphoton Mass Spectrometry of Metastables: Direct Observation of Decay in a High-Resolution Time-of-Flight Instrument. J Phys Chem 86: 4857–4863

    Google Scholar 

  105. Karataev VI, Mamyrin BA, Shmikk DV (1972) New Method for Focusing Ion Bunches in Time-of-Flight Mass Spectrometers. Soviet Physics-Technical Physics 16: 1177–1179

    Google Scholar 

  106. Kühlewind H, Kiermeier A, Neusser HJ, Schlag EW (1987) Laser Measurements of the Uni-molecular Kinetics of Energy Selected Molecular Ions: Isotope Effects in Benzene. J Chem Phys 87: 6488–6498

    Google Scholar 

  107. Kühlewind H, Neusser HJ, Schlag EW (1983) Metastable Fragment Ions in Multiphoton Time-of-Flight Mass Spectrometry: Decay Channels of the Benzene Cation. Int J Mass Spectrom Ion Proc 51: 255–265

    Google Scholar 

  108. Bergmann T, Martin TP, Schaber H (1989) High Resolution Time-of-Flight Mass Spectrometer. Rev Sci Instr 60: 792–793

    Article  CAS  Google Scholar 

  109. Paul W, Steinwedel H (1953) Ein neues Massenspektrometer ohne Magnetfeld. Z Naturforsch 8a: 448–450

    Google Scholar 

  110. Paul W, Raesler M (1955) Das elektrische Massenfilter. Z Physik 140: 262–273

    Article  Google Scholar 

  111. Paul W, Reinhard HP, von Zahn U (1958) Das elektrische Massenfilter als Massenspektrometer. Z Physik 152: 143–182

    Article  CAS  Google Scholar 

  112. McLachlan NW (1951) Theory and Application of Mathieu Functions. Oxford University Press, New York

    Google Scholar 

  113. Dawson PH (ed) (1976) Quadrupole Mass Spectrometry and its Application. Elsevier, Amsterdam

    Google Scholar 

  114. Campana JE (1980) Elementary Theory of the Quadrupole Mass Filter. Int J Mass Spectrom Ion Phys 33: 101–117

    Article  CAS  Google Scholar 

  115. Dayton lE, Shoemaker FC,MozleyRF(1954) The Measurement of Two-Dimensional Fields. Part II: Study of a Quadrupole Magnet. Rev Sci Instrum 25: 485–489

    Google Scholar 

  116. Denison DR (1971) Operating Parameters of a Quadrupole in a Grounded Cylindrical Housing. J Vac Sci Technol 8: 266–269

    Article  CAS  Google Scholar 

  117. Baldeschwieler JD (1968) Ion Cyclotron Resonance Spectroscopy. Science 159: 263–273

    Article  CAS  Google Scholar 

  118. Beauchamp JL, Anders LR, Baldeschwieler JD (1967) The Study of Ion-Molecule Reactions in Chloroethylene by Ion Cyclotron Resonance Spectroscopy. J Am Chem Soc 89: 4569–4577

    Article  CAS  Google Scholar 

  119. Farrar JM, Saunders WH (eds) (1988) Techniques for the Study of Ion-Molecule Reactions. Wiley,New York

    Google Scholar 

  120. Comisarow MB, Marshall AG (1974) Fourier Transform Ion Cyclotron Resonance Spectroscopy. Chem Phys Lett 25: 282–283

    Article  CAS  Google Scholar 

  121. Hartmann H, Wanczek KP (eds) (1982) Ion Cyclotron Resonance Spectrometry II, Lecture Note in Chemistry Series, vol 31. Springer, Berlin

    Google Scholar 

  122. Wanczek KP (1984) Ion Cyclotron Resonance Spectrometry-A Review. Int J Mass Spectrom Ion Proc 60: 11–60

    Article  CAS  Google Scholar 

  123. Allemann M, Kellerhals HP, Wanczek KP (1980) A New Fourier Transform Mass Spectrometer with a Superconducting Magnet. Chem Phys Lett 75: 328–331

    Article  CAS  Google Scholar 

  124. Irion MP, SelingerA,Wendel R (1990) Secondary Ion Fourier Transform Mass Spectrometry: A New Approach Towards the Study of Ion Metal Clusters Chemistry. Int J Mass Spectrom Ion Proc 96: 27–47

    Google Scholar 

  125. Allemann M, Kellerhals HP, Wanczek KP (1983) High Magnetic Field Fourier Transform Ion Cyclotron Resonance Spectroscopy. Int J Mass Spectrom Ion Phys 46: 139–142

    Article  CAS  Google Scholar 

  126. Ervin KM, Hoe J, Lineberger WC (1989) A Study of the Singlet and Triplet States of Vinylidene by Photoelectron Spectroscopy of H2C=C-, D2C=C- and HDC=C-. VinylideneAcetylene Isomerization. J Chem Phys 91: 5974–5992

    Google Scholar 

  127. Leopold DG, Murray KK, Stevens Miller AA, Lineberger WC (1985) Methylene: A Study of the X3B1 and Cl 1 A1 States by Photoelectron Spectroscopy of CHZ and CDZ. J Chem Phys 83: 4849–4865

    Article  CAS  Google Scholar 

  128. Bleakney W, Hipple JA (1938) A New Mass Spectrometer with Improved Focusing Properties. Phys Rev 53: 521–533

    Article  CAS  Google Scholar 

  129. Bennett WH (1950) Radiofrequency Mass Spectrometer. J Appl Phys 21: 143–149

    Article  CAS  Google Scholar 

  130. Berry CE (1954) Ion Trajectories in the Omegatron. J Appl Phys 25: 28–31

    Article  CAS  Google Scholar 

  131. Sommer H, Thomas HA, Hipple JA (1951) Measurement of e/M by Cyclotron Resonance. Phys Rev 82: 697–702

    Article  CAS  Google Scholar 

  132. Kuyatt CE (1968) Measurement of Electron Scattering from a Static Gas Target. In: Bederson B, Fite WL (eds) Atomic and Electron Physics - Atomic Interactions. Academic Press, New York

    Google Scholar 

  133. Hasted JB (1964) Physics of Atomic Collisions. Butterworths, London

    Google Scholar 

  134. Wiza JL (1979) Microchannel Plate Detectors. Nucl Instr Methods 162: 587–601

    Article  CAS  Google Scholar 

  135. Gao RS, Robert WE, Smith GJ, Stebbings RF (1988) High-Resolution Position-Sensitive Detector. Rev Sci Instr 59: 1954–1956

    Article  CAS  Google Scholar 

  136. Gao RS, Gibner PS, Newman JH, Smith KA, Stebbings RF (1984) Absolute and Angular Efficiencies of a Microchannel-Plate Position-Sensitive Detector. Rev Sci Instr 55: 1756–1759

    Article  CAS  Google Scholar 

  137. Kalamarides A, Walter CW, Lindsay BG, Smith KA, Dunning FB (1989) Post-Attachment Interactions in K(nd)-CF3I Collisions at Intermediate n. J Chem Phys 91: 4411–4413

    Article  CAS  Google Scholar 

  138. Kalamarides A, Marawar RW, Ling X, Walter CW, Lindsay BG, Smith KA, Dunning FB (1990) Negative Ion Production in Collisions Between K(nd) Rydberg Atoms and CF3Br and CF2Br2. J Chem Phys 92: 1672–1676

    Article  CAS  Google Scholar 

  139. Daly RN (1960) Scintillation Type Mass Spectrometer Ion Detector. Rev Sci Instrum 31: 264267

    Google Scholar 

  140. Grossmann WEL (1989) A Comparison of Optical Detectors for the Visible and Ultraviolet. J Chem Ed 66: 697–700

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Illenberger, E., Momigny, J. (1992). Instrumentation. In: Gaseous Molecular Ions. Topics in Physical Chemistry, vol 2. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-07383-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07383-4_3

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-07385-8

  • Online ISBN: 978-3-662-07383-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics