Skip to main content

Electron Attachment to Molecular Clusters and Condensed Molecules

  • Chapter
Gaseous Molecular Ions

Part of the book series: Topics in Physical Chemistry ((TOPPHYSCHEM,volume 2))

  • 141 Accesses

Abstract

The term “cluster” is used in many different disciplines, from astronomy to chemistry. In the latter, structures in solid or liquid materials or in gases are generally labeled with this title. Webster’ Dictionary [1] defines a cluster as “any group of persons, animals or things close together”. In this sense, we will assign a group of molecules in the gas phase which are close together as a free molecular cluster or a free molecular aggregate. It is well known since the work of van der Waals [2] that the existence of condensed phases of matter stems from the attractive forces between molecules. These forces are commonly assigned as van der Waals forces: a group of molecules which are held together by these forces is labeled as a van der Waals cluster. Although at the time of van der Waals, the origins of such intermolecular forces were not understood, the fundamental connection between the macroscopic properties of matter and the forces between the constituent molecules was already evident.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Webster’s New World Dictionary (1979). Simon and Schuster, New York

    Google Scholar 

  2. Van der Waals JD (1873) Doctoral Dissertation, Leiden

    Google Scholar 

  3. Jortner J, Pullman A, Pullman B (eds) (1987) Large Finite Systems. Reidel, Dordrecht

    Google Scholar 

  4. Benedek G, Martin TP, Pacchioni G (eds) (1988) Elemental and Molecular Clusters. Springer, Berlin

    Google Scholar 

  5. Maier JP (ed) (1989) Ion and Cluster Ion Spectroscopy and Structure. Elsevier, Amsterdam

    Google Scholar 

  6. Z Physik D (1991) vols 19 and 20, Special Issue, Proceedings IS SPIC 5, 5th International Symposium on Small Particles and Inorganic Clusters, Konstanz

    Google Scholar 

  7. Bowers MT, Jarrold MF, Stace AC (eds) (1990) Gas Phase Cluster Ions, Special Issue. Int J Mass Spectrom Ion Proc 102

    Google Scholar 

  8. Haberland H, Kornmeier H. Langosch H, Oschwald M, Tanner G (1990) Experimental Study of the Transition from van der Waals over Covalent to Metallic Bonding in Mercury Clusters. J Chem Soc Faraday Trans 86: 2437–2481

    Google Scholar 

  9. Rademann K (1989) Photoionization Mass Spectrometry and Valence Photoelectron-Photoion Coincidence Spectroscopy of Isolated Clusters in a Molecular Beam. Ber Bunsenge Phys Chem 93: 653–670

    Article  CAS  Google Scholar 

  10. Maitland GC, Rigby M, Smith EB, Wakeham WA (1987) Intermolecular Forces. Oxford Scientific Publication, Oxford

    Google Scholar 

  11. Pikaev AK (1971) The Solvated Electron in Radiation Chemistry. Academy of Science of the USSR, Translated from Russian. Israel Program for Scientific Translations, Jerusalem

    Google Scholar 

  12. Lepoutre G (1984) Colloque Weyl: A Short History. J Phys Chem 88: 3699–3700

    Article  CAS  Google Scholar 

  13. Klots CE, Compton RN (1977) Electron Attachment to Carbon Dioxide Clusters in a Supersonic Beam. J Chem Phys 67: 1779–1780

    Article  CAS  Google Scholar 

  14. Märk TD, Leiter K, Ritter W, Stamatovic A (1985) Low-Energy-Electron Attachment to Oxygen Clusters Produced by Nozzle Expansion. Phys Rev Lett 55: 2559–2562

    Article  Google Scholar 

  15. Stamatovic A, Scheier P, Märk TD (1988) Electron Attachment and Electron Impact Ionization of SF6 and SF6/Ar Clusters. J Chem Phys 88: 6884–6888

    Article  CAS  Google Scholar 

  16. Hashemi R, Kühn A, Illenberger E (1990) Electron Capture Induced Processes in Molecules and Molecular Aggregates. Int J Mass Spectrom Ion Proc 100: 753–784

    Article  CAS  Google Scholar 

  17. Armbruster M, Haberland H, Schindler H-G (1981) Negatively Charged Water Clusters, or the First Observation of Free Hydrated Electrons. Phys Rev Lett 47: 323–326

    Article  CAS  Google Scholar 

  18. Haberland H, Langosch H, Schindler H-G, Worsnop DR (1984) Negatively Charged Water Clusters: Mass Spectra of (H2O); and (D2O);. J Phys Chem 88: 3903–3904

    Article  CAS  Google Scholar 

  19. Knapp M, Echt 0, Kreisle D, Recknagel E (1987) Electron Attachment to Water Clusters under Collision-Free Conditions. J Phys Chem 91: 2601–2607

    Article  CAS  Google Scholar 

  20. Mitsuke K, Tada H, Misaizu F, Kondow T, Kuchitsu K (1988) Negative Ion Formation from CC14 Clusters in Collision with Highly Excited Rydberg Atoms and Slow Electrons. Chem Phys Lett 143: 6–12

    Article  CAS  Google Scholar 

  21. Melton CE (1972) Cross Sections and Interpretation of Dissociative Attachment Reactions Producing OH-, 0- and H- in H2O. J Chem Phys 57: 4218–4225

    Article  CAS  Google Scholar 

  22. Jungen M, Vogt J, Staemmler V (1979) Feshbach-Resonances and Dissociative Electron Attachment to H2O. Chem Phys 37: 49–55

    Article  CAS  Google Scholar 

  23. Landman U, Barnett RN, Cleveland CL, Scharf D, JortnerJ (1987) Electron Excitation Dynamics, Localization, and Solvation in Small Clusters. J Phys Chem 91: 4890–4899

    Google Scholar 

  24. Coe JV, Lee GH, Eaton JG, Arnold ST, Sarkas HW, Bowen KH, Ludewigt C, Haberland H (1990) Photoelectron Spectroscopy of Hydrated Cluster Anions, (H2O). J Chem Phys 92: 3980–3982

    Article  CAS  Google Scholar 

  25. Haberland H (1990) Solvated-Electron Clusters. In: Scoles G (ed) The Chemical Physics of Atomic and Molecular Clusters. North Holland, Amsterdam

    Google Scholar 

  26. Ramsey NF (1985) Molecular Beams. Oxford University Press, Oxford

    Google Scholar 

  27. Kantrowitz A, Grey J (1951) A High Intensity Source for the Molecular Beam. Part I. Theoretical. Rev Sci Instrum 22: 328–332

    Google Scholar 

  28. Anderson JB (1974) Molecular Beams from Nozzle Sources. In: Wegner PP (ed) Molecular Beams and Low Density Gas Dynamics. Marcel Dekker, New York

    Google Scholar 

  29. Miller DR (1988) Free Jet Sources. In: Scoles G (ed) Miller DR 1. Oxford University Press

    Google Scholar 

  30. Becker E (1965) Gasdynamik. Teubner, Stuttgart

    Google Scholar 

  31. Fricke J (1973) Kondensation in Düsenstrahlen. Physik in unserer Zeit 4: 21–27

    Article  Google Scholar 

  32. Liepmann HW, Roshko A (1957) Elements of Gas Dynamics. Wiley, New York

    Google Scholar 

  33. Smalley RE, Wharton L, Levy DH (1977) Molecular Optical Spectroscopy with Supersonic Beams and Jets. Accounts Chem Res 10: 139–145

    Article  CAS  Google Scholar 

  34. Levy DH (1980) Laser Spectroscopy of Cold Gas-Phase Molecules. Ann Rev Phys Chem 31: 197–225

    Article  CAS  Google Scholar 

  35. Anderson JB, Fenn JB (1965) Velocity Distributions in Molecular Beams from Nozzle Sources. Phys Fluids 8: 780–787

    Article  CAS  Google Scholar 

  36. Toennies JP, Winkelmann K (1977) Theoretical Studies of Highly Expanded Free Jets: Influence of Quantum Effects and a Realistic Intermolecular Potential. J Chem Phys 66: 3965–3979

    Google Scholar 

  37. Lotter J, Illenberger E (1990) Electron Capture Induced Reactions in CF4 Clusters. J Phys Chem 94: 8951–8956

    Article  CAS  Google Scholar 

  38. Kühn A, Illenberger E (1990) Low Energy (0–10 eV) Electron Attachment to CF3C1 Clusters: Formation of Product Ions and Analysis of Excess Translational Energy. J Chem Phys 93: 357–364

    Google Scholar 

  39. Heni M, Illenberger E, Baumgärtel H, Süzer S (1982) The Dissociation of the 2H Fluoroethylene Anions. Chem Phys Lett 87: 244–248

    Article  CAS  Google Scholar 

  40. Heni M, Illenberger E (1986) The Unimolecular Decomposition of the Fluoroethylene Radical Anions Formed by Electron Attachment. J Electron Spectrosc Relat Phen 41: 453–466

    Article  CAS  Google Scholar 

  41. Oster T, Kühn A, Illenberger E (1989) Gas Phase Negative Ion Chemistry. Int J Mass Spectrom Ion Proc 89: 1–72

    Article  CAS  Google Scholar 

  42. Paddon-Row MN, Rondan NG, Houk KN, Jordan KD (1982) Geometries of the Radical Anions of Ethylene, Fluoroethylene, 1,1-Difluoroethylene, and Tetrafluoroethylene. J Am Chem Soc 104: 1143–1145

    Article  CAS  Google Scholar 

  43. Fenzlaff M, Illenberger E (1989) Energy Partitioning in the Unimolecular Decomposition of Cyclic Perfluororadical Anions. Chem Phys 136: 443–452

    Article  CAS  Google Scholar 

  44. Süzer S, Illenberger E, Baumgärtel H (1984) Negative Ion Mass Spectra of Hexafluoro-1,3butadiene, Hexafluoro-2-butyne and Hexafluorocyclobutene. Identification of the Structural Isomers. Org Mass Spectrom 19: 292–293

    Google Scholar 

  45. Hashemi R (1989) Elektroneneinfanginduzierte Reaktionen in van der Waals-Aggregaten halogenierter Kohlenwasserstoffe. Diplomarbeit. Freie Universität Berlin

    Google Scholar 

  46. Echt O, Knapp M, Schwarz C, Recknagel E (1987) Electron Attachment to Clusters. In: Jortner J, Pullman A, Pullman B (eds) Large Finite Systems. Reidel, Dordrecht

    Google Scholar 

  47. Belic DS, Landau M, Hall RI (1981) Energy and Angular Dependence of II- (D-)Ions Produced by Dissociative Electron Attachment to H2O (D2O). J Phys B 14: 175–190

    Article  CAS  Google Scholar 

  48. Moore CE (1971) Atomic Energy Levels. US Dept Commerce NSRDS-NBS 35, Washington, DC

    Google Scholar 

  49. Mitsuke K, Kondow T, Kuchitsu K (1986) Collisional Electron Transfer to CH3CN Clusters from High-Rydberg Krypton Atoms. J Phys Chem 90: 1505–1506

    Article  CAS  Google Scholar 

  50. Kraft T, Ruf M-W, Hotop H (1991) Electron Transfer from State-Selected Rydberg Atoms to (N2O)m and (CF3C1)m Clusters. Z Phys D

    Google Scholar 

  51. Kraft T, Ruf M-W, Hotop H (1990) Strong Dependence of Negative Cluster Ion Spectra on Principal Quantum Number n in Collisions of State-Selected Ar** (nd) Rydberg Atoms with N2O Clusters. Z Phys D 17: 37–43

    Article  CAS  Google Scholar 

  52. Ertl G, Köppers J (1985) Low Energy Electrons and Surface Chemistry. VCH Verlagsgesellschaft mbH, Weinheim

    Google Scholar 

  53. Willis RF (ed) (1990) Vibrational Spectroscopy of Adsorbates. Springer, Berlin

    Google Scholar 

  54. Christmann K (1991) Introduction to Surface Physical Chemistry. Topics in Physical Chemistry, vol I. Steinkopff, Darmstadt

    Google Scholar 

  55. Ibach H, Mill DL (1982) Electron Energy Loss Spectroscopy and Surface Vibrations. Academic Press, New York

    Google Scholar 

  56. Tolk NH, Traum MM, Tully JC, Madey TE (eds) (1983) Desorption Induced by Electronic Transitions DIET I. Springer, Berlin

    Google Scholar 

  57. Brenig W, Menzel D (eds) (1985) Desorption Induced by Electronic Transitions DIET II. Springer, Berlin

    Google Scholar 

  58. Stulen RH, Knotek ML (eds) (1988) Desorption Induced by Electronic Transitions DIET III. Springer, Berlin

    Google Scholar 

  59. Betz G, Varga P (eds) (1990) Desorption Induced by Electronic Transitions DIET IV. Springer, Berlin

    Google Scholar 

  60. Menzel D (1986). Desorption Induced by Electronic Transitions. Nucl Instrum Methods B 13: 507–517

    Article  Google Scholar 

  61. Avouris P, Walkup RE (1989) Fundamental Mechanisms of Desorption and Fragmentation Induced by Electronic Transitions at Surfaces. Ann Rev Phys Chem 40: 173–206

    Article  CAS  Google Scholar 

  62. Sanche L (1990) Low-Energy Electron Scattering from Molecules on Surfaces. J Phys B: At Mol Opt Phys 23: 1597–1624

    Article  CAS  Google Scholar 

  63. Sanche L, Parenteau L (1986) Dissociative Attachment in Electron-Stimulated Desorption from Condensed NO and N2O. J Vac Sci Technol A 4: 1240–1242

    Article  CAS  Google Scholar 

  64. Azria R, Parenteau L, Sanche L (1987) Dynamics of Dissociative Attachment Reactions in Electron-Stimulated Desorption: Cl-from Condensed C12. J Chem Phys 87: 2292–2296

    Article  CAS  Google Scholar 

  65. Sanche L, Parenteau L (1987) Ion-Molecule Surface Reaction Induced by Slow (5–20 eV) Electrons. Phys Rev Lett 59: 136–139

    Article  CAS  Google Scholar 

  66. Sambe H, Ramaker DE, Parenteau L, Sanche L (1987) Electron-Stimulated Desorption Enhanced by Coherent Scattering. Phys Rev Lett 59: 505–508

    Article  CAS  Google Scholar 

  67. Sambe H, Ramaker DE, Deschênes M, Bass AD, Sanche L (1990) Absolute Cross Section for Dissociative Electron Attachment in 02 Condensed on Kr Film. Phys Rev Lett 64: 523–526

    Article  CAS  Google Scholar 

  68. Sanche L (1984) Dissociative Attachment in Electron Scattering from Condensed 02 and CO. Phys Rev Lett 53: 1638–1641

    Article  CAS  Google Scholar 

  69. Azria R, Parenteau L, Sanche L (1987) Dissociative Attachment from Condensed 02: Violation of the Selection Rule E - E. Phys Rev Lett 59: 638–640

    Article  CAS  Google Scholar 

  70. Sanche L, Parenteau L, Cloutier P (1989) Dissociative Attachment Reactions in Electron-Stimulated Desorption from Condensed 02 and OZ Doped Rare-Gas Matrices. J Chem Phys 91: 2664–2674

    Article  CAS  Google Scholar 

  71. Krupenie PH (1972) The Spectrum of Molecular Oxygen. J Phys Chem Rev Data 1: 423–434

    Article  CAS  Google Scholar 

  72. Krauss M, Neumann D, Wahl AC, Das G, Zemke W (1973). Excited Electronic States of 0. Phys Rev A 7: 69–77

    Article  CAS  Google Scholar 

  73. Sambe H, Ramaker DE (1987) The Selection Rule in Electron Attachment and Autoionization of Diatomic Molecules. Chem Phys Lett 139: 386–388

    Article  CAS  Google Scholar 

  74. Schulz GJ, Dowell JT (1962) Excitation of Vibrational and Electronic Levels in 02 by Electron Impact. Phys Rev 128: 174–177

    Article  CAS  Google Scholar 

  75. Hashemi R, Illenberger E (1991) Violation of the c Selection Rule in Electron Attachment to Oxygen Clusters. Chem Phys Lett 187: 623–627

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Illenberger, E., Momigny, J. (1992). Electron Attachment to Molecular Clusters and Condensed Molecules. In: Gaseous Molecular Ions. Topics in Physical Chemistry, vol 2. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-07383-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07383-4_12

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-07385-8

  • Online ISBN: 978-3-662-07383-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics