Electron Attachment Spectroscopy

  • Eugen Illenberger
  • Jacques Momigny
Part of the Topics in Physical Chemistry book series (TOPPHYSCHEM, volume 2)

Abstract

In EAS a beam of electrons produced by an electron monochromator in crossed with the target gas beam and the anions are recorded with a mass spectrometer. Figure 2.1 shows a configuration which uses a trochoidal electron monochromator (TEM) and a quadrupole mass filter [1] (see also Sections 3.2.6 and 3.3.4 in the first contribution). The monochromator is made of molybdenum in order to reduce surface problems. Non-magnetic stainless steel is used for the other components and for entire ultra-high vacuum system.

Keywords

Foam Ozone Chlorine Molybdenum Deuterium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oster T, Kühn A, Illenberger E (1989) Gas Phase Negative Ion Chemistry. Int J Mass Spectrom Ion Proc 89: 1–72CrossRefGoogle Scholar
  2. 2.
    Roy D (1972) Characteristics of the Trochoidal Monochromator by Calculation of Electron Energy Distribution. Rev Sci Instrum 43: 535–541CrossRefGoogle Scholar
  3. 3.
    McMillan MR, Moore, JH (1980) Optimization of the Trochoidal Electron Monochromator. Rev Sci Instrum 51: 944–950CrossRefGoogle Scholar
  4. 4.
    Stamatovic A, Schulz GJ (1979) Characteristics of the Trochoidal Electron Monochromator. Rev Sci Instrum 41: 423–427CrossRefGoogle Scholar
  5. 5.
    Stamatovic A, Schulz G.J (1968) Trochoidal Electron Monochromator. Rev Sci Instrum 39: 1752–1753CrossRefGoogle Scholar
  6. 6.
    Allan M (1989) Study of Triplet States and Short-Lived Negative Ions by Means of Electron Impact. J Electron Spectrosc Relat Phen 48: 219–351CrossRefGoogle Scholar
  7. 7.
    Jordan KD, Burrow PD (1987) Temporary Anion States of Polyatomic Hydrocarbons. Chem Rev 87: 557–588CrossRefGoogle Scholar
  8. 8.
    Giordan JC, Moore, JH, Tossell JA, Weber J (1983) Negative Ion States of 3d Metallocenes. J Am Chem Soc 105: 3431–3433CrossRefGoogle Scholar
  9. 9.
    Guerra M, Jones D, Distefano G, Scagnolari F, Modelli A (1991) Temporary Anion States in the Chloromethanes and in Monochloroalkanes. J Chem Phys 94: 484–490CrossRefGoogle Scholar
  10. 10.
    Ajello JM, Chutjian A (1979) Line Shapes for Attachment of Threshold Electrons to SF6 and CFC13: Threshold Photoelectron (TPSA) Studies. J Chem. Phys 71: 1079–1087Google Scholar
  11. 11.
    Chutjian A, Alajajian S H (1985) s-Wave Threshold in Electron Attachment: Observations and Cross Sections in CC14 and SF6 at Ultralow Electron Energies. Phys Rev A 31: 2885–2892Google Scholar
  12. 12.
    Orient OJ, Chutjian A (1986) Comparison of Calculated and Experimental Attachment Rate Constants for SF6 in the Temperature Range 200–600 K. Phys Rev A 34: 1841–1846CrossRefGoogle Scholar
  13. 13.
    Christophorou LG, Pace MO (eds) (1984) Gaseous Dielectrics. Pergamon, New YorkGoogle Scholar
  14. 14.
    Kunhardt EE, Luessen LH (eds) (1983) Electrical Breakdown and Discharges in Gases. Plenum, New YorkGoogle Scholar
  15. 15.
    Bansal KM, Fessenden RW (1976) On the Oxidizing Radical Formed by Reaction of e;q and SF6. J Phys Chem 80: 1743–1745CrossRefGoogle Scholar
  16. 16.
    Christophorou LG (1987) Electron Attachment and Detachment Processes in Electronegative Gases. Contrib Plasma Phys 27: 237–281Google Scholar
  17. 17.
    Hunter SR, Carter JG, Christophorou LG (1989) Low Energy Electron Attachment to SF6 in N2, Ar and Xe Buffer Gases. J Chem Phys 90: 4879–4891Google Scholar
  18. 18.
    Mothes KG, Schindler RN (1971) Die Bestimmung absoluter Geschwindigkeitskonstanten für den Einfang thermischer Elektronen durch CC14, SF6, C4F8, C7F14, N2F4 and NF3. Ber Bunsenges Phys Chem 75: 938–945Google Scholar
  19. 19.
    Berkowitz J (1979) Photoabsorption, Photoionization, and Photoelectron Spectroscopy. Academic Press, New YorkGoogle Scholar
  20. 20.
    Grimsrud EP, Chowdhurry S, Kebarle P (1985) Electron Affinity of SF6 and Perfluoromethylcyclohexane. The Unusual Kinetics of Electron Transfer Reactions A- + B =A+B- where A= SF6 or Perfluorinated Cyclo-Alkanes. J Chem Phys 83: 1059–1068CrossRefGoogle Scholar
  21. 21.
    Klobukowski M, Barandiarân Z, Seijo L, Huzinaga S (1987) Towards HF SCF Value of Electron Affinity of SF6. J Chem Phys 86: 1637–1638CrossRefGoogle Scholar
  22. 22.
    Compton RN, Christophorou LG, Hurst GS, Reinhardt PW (1966) Nondissociative Electron Capture in Complex Molecules and Negative Ion Lifetimes. J Chem Phys 45: 4634–4639CrossRefGoogle Scholar
  23. 23.
    Harland PW, Thynne JCJ (1971) Autodetachment Lifetimes, Attachment Cross Sections, and Negative Ions Formed by Sulfur Hexafluoride and Sulfur Tetrafluoride. J Phys Chem 75: 3517–3523Google Scholar
  24. 24.
    Odom RW, Smith, DL, Futrell HJ (1975) A Study of Electron Attachment to SF6 and Autodetachment and Stabilization of SF6. J Phys B8: 1349–1366Google Scholar
  25. 25.
    Foster MS, Beauchamp JL (1975) Electron Attachment to Sulphur Hexafluoride: Formation of Stable SF6 at Low Pressure. Chem Phys Lett 31: 482–486CrossRefGoogle Scholar
  26. 26.
    Fenzlaff M, Gerhard R, Illenberger E (1988) Associative and Dissociative Electron Attachment to SF6 and SF5C1. J Chem Phys 88: 149–155CrossRefGoogle Scholar
  27. 27.
    Hay PJ (1977) Excited States and Positive Ions in SF6. J Am Chem Soc 99: 1013–1019CrossRefGoogle Scholar
  28. 28.
    Hay PJ (1982) The Relative Energies of SF6 and SF6 as a Function of Geometry. J Chem Phys 76: 502–504CrossRefGoogle Scholar
  29. 29.
    Tang R, Callaway J (1986) Electronic Structure of SF6. J Chem Phys 84: 6854–6860CrossRefGoogle Scholar
  30. 30.
    Stockdale JAD, Compton RN, Schweinler HC (1969) Negative Ion Formation in Selected Hexafluoride Molecules. J Chem Phys 53: 1502–1507CrossRefGoogle Scholar
  31. 31.
    Drzaic PS, Brauman JI (1982) Electron Photodetachment Study of Sulfur Hexafluoride Anion: Comments on the Structure of SF6. J Am Chem Soc 104: 13–19CrossRefGoogle Scholar
  32. 32.
    Kline LE, Davies DK, Chen CL, Chantry PJ (1979) Dielectric Properties for SF6 and SF6 Mixtures Predicted from Basic Data. J Appl Phys 50: 6789–6796CrossRefGoogle Scholar
  33. 33.
    Chen CL, Chantry PJ (1979) Photon Enhanced Dissociative Electron Attachment in SF6 and its Isotopic Selectivity. J Chem Phys 3897–3907Google Scholar
  34. 34.
    Babcock LM, Streit GE (1981) Ion-Molecule Reactions of SF6: Determination of I.P.(SF5), A.P.(SF5-/SF6) and D(SFSF). J Chem Phys 74: 5700–5706CrossRefGoogle Scholar
  35. 35.
    Sieck LW, Ausloos PJ (1990) The Ionization Energy of SF5 and the SF-5F Bond Dissociation Energy. J Chem Phys 93: 8374–8378CrossRefGoogle Scholar
  36. 36.
    Mead RD, Stevens AE, Lineberger WC (1984) Photodetachment in Negative Ion Beams, In: Bowers MT (ed) Gas Phase Ion Chemistry, vol 3, vol 3. Academic Press, New YorkGoogle Scholar
  37. 37.
    Oster T, Illenberger E (1988) Negative Ion Formation in SF5NCO Following Low-Energy Electron Attachment. Int J Mass Spectrom Ion Proc 85: 125–136CrossRefGoogle Scholar
  38. 38.
    Hubrich C, Zetzsch C, Stuhl F (1977) Absorptionsspektren von halogenierten Methanen im Bereich von 275 bis 160 nm bei Temperaturen von 298 and 208 K. Ber Bunsenges Phys Chem 81: 437–442CrossRefGoogle Scholar
  39. 39.
    Huebner RH, Bushnell DL, Celotta RJ, Mielczarek SR, Kuyatt, CE (1975) Ultraviolet Photoabsorption by Halocarbons 11 and 12 from Electron Impact Measurements. Nature 257: 376–378CrossRefGoogle Scholar
  40. 40.
    Molina MJ, Rowland FS (1974) Stratospheric Sink for Chlorofluoromethanes: Chlorine Atom-Catalyzed Destruction of Ozone. Nature 249: 810–812Google Scholar
  41. 41.
    Elliot S, Rowland FS (1987) Chlorofluorocarbons and Stratospheric Ozone. J Chem Educ 64: 387–391CrossRefGoogle Scholar
  42. 42.
    Solomon S (1990) Progress Towards a Quantitative Understanding of Antarctic Ozone Depletion. Nature 347: 347–354CrossRefGoogle Scholar
  43. 43.
    Schumacher R, Sprünken H-R, Christodoulides AA, Schindler RN (1978) Studies by the Electron Cyclotron Resonance Technique. 13. Electron Scavenging Properties of the Molecules CC13F, CC12F2, CC1F3 and CF4. J Phys Chem 82: 2248–2252CrossRefGoogle Scholar
  44. 44.
    Crompton RW, Haddad GN, Heberberg R, Robertson AG (1982) The Attachment Rate for Thermal Electrons to SF6 and CFC13. J Phys B 15: L483–484CrossRefGoogle Scholar
  45. 45.
    Illenberger E, Scheunemann H-U, Baumgärtel H (1979) Negative Ion Formation in CF2C12, CF3C1 and CFC13 Following Low-Energy (0–10 eV) Impact with Near Monoenergetic Electrons. Chem Phys 37: 21–31CrossRefGoogle Scholar
  46. 46.
    Illenberger E, Scheunemann H-U, Baumgärtel H (1978) Fragmentierung von Halogenmethanen beim Stoß mit monochromatischen Elektronen niedriger Energie. Ber Bunsenges Phys chem 82: 1154–1158CrossRefGoogle Scholar
  47. 47.
    Ausloos P, Rebbert RE, Glasgow L (1977) Photodecomposition of Chloromethanes Adsorbed on Silica Surfaces. J Res Natl Bur Stan 82: 1–8CrossRefGoogle Scholar
  48. 48.
    Parlar H, Korte F (1981) Wie effizient ist der photoinduzierte Abbau organischer Umweltchemikalien in heterogener Phase. Chem Ztg 105: 127–134Google Scholar
  49. 49.
    Dowben PA, Grunze M, Jones RG, Illenberger E (1981) Interaction of CFC13 with an Fe(100) Surface Part II: Adsorption and Decomposition at Ambient Temperatures. Ber Bunsenges Phys Chem 85: 734–739Google Scholar
  50. 50.
    Buchmann L-M, Illenberger E (1987) The Interaction of CFC13 and CF2C12 with Solid Surfaces Studies by Thermal Desorption Mass Spectrometry. Ber Bunsenges Phys Chem 91: 653–659Google Scholar
  51. 51.
    Dewar MJS, Thiel W (1977) Ground States with Molecules. 38. The MNDO Method. Approximations and Parameters. J Am Chem Soc 99: 4899–4907Google Scholar
  52. 52.
    Olthoff JK, Tossell JA, Moore JH (1985) Electron Attachment to Haloalkanes and Halobenzenes. J Chem Phys 83: 5627–5634CrossRefGoogle Scholar
  53. 53.
    Dispert H, Lacmann K (1978) Negative Ion Formation in Collisions between Potassium and Fluoro-and Chloromethanes: Electron Affinities and Bond Dissociation Energies. Int J Mass Spectrom Ion Phys 28: 49–67Google Scholar
  54. 54.
    McMillan DF, Golden DM (1982) Hydrocarbon Bond Dissociation Energies, In: Rabinovitch BS, Schurr JM, Strauss HL (eds). Annu Rev Phys Chem 33: 493–532Google Scholar
  55. 55.
    Lide DR (ed) (1985) JANAF Thermochemical Tables, 3rd edn. American Chemical Society, New YorkGoogle Scholar
  56. 56.
    Harland PW, Franklin JL, Carter DE (1972) Use of Translational Energy Measurements in the Evaluation of the Energetics for Dissociative Attachment Processes. J Chem Phys 58: 1430–1437CrossRefGoogle Scholar
  57. 57.
    Franklin JL (1979) Energy Distribution in the Unimolecular Decomposition of Ions, In: Bowers MT (ed), Gas Phase Ion Chemistry, vol 1. Academic Press, New YorkGoogle Scholar
  58. 58.
    Lupo DW, Quack M (1987) IR-Laser Photochemistry, Chem Rev 87: 181–216CrossRefGoogle Scholar
  59. 59.
    Quack M, Troe J (1975), Complex Formation in Reactive and Inelastic Scattering: Statistical Adiabatic Channel Model for Unimolecular Processes III. Ber Bunsenges Phys Chem 79: 170183Google Scholar
  60. 60.
    Illenberger E (1982) Habilitationsschrift. Freie Universität Berlin, p 183–186Google Scholar
  61. 61.
    Illenberger E (1982) A Method to Determine Excess Energies in Dissociative Electron Attachment Processes. Ber Bunsenges Phys Chem 86: 247–252CrossRefGoogle Scholar
  62. 62.
    Massey HSW (1976) Negative Ions. Cambridge University Press, CambridgeGoogle Scholar
  63. 63.
    Rapp D, Briglia DD (1965) Total Cross Sections for Ionization and Attachment in Gases by Electron Impact. II. Negative Ion Formation. J Chem Phys 43: 1480–1489Google Scholar
  64. 64.
    Chantry PJ, Schulz GJ (1967) Kinetic Energy Distribution of Negative Ions Formed by Dissociative Attachment and the Measurement of the Electron Affinity of Oxygen. Phys Rev 156: 134–141CrossRefGoogle Scholar
  65. 65.
    Robin MB (1985) Higher Excited States of Polyatomic Molecules, vol III. Academic, Orlando, FloridaGoogle Scholar
  66. 66.
    Suto M, Washida N, Akimoto H, Nakamura M (1983) Emission Spectra of CF3 Radicals. III. Spectra and Quenching of CF3 Emission Band Produced in the VUV Photolyses of CF3C1 and CF3Br. J Chem Phys 78: 1019–1024CrossRefGoogle Scholar
  67. 67.
    Fenzlaff M, Illenberger E (1989) Energy Partitioning in the Unimolecular Decomposition of Cyclic Perfluororadical Anions. Chem Phys 136: 443–452CrossRefGoogle Scholar
  68. 68.
    Scheunemann H-U, Heni E, Illenberger E, Baumgärtel H (1982) Dissociative Attachment and Ion Pair Formation in CF4, CHF3, CH2F2 and CH3F under Low Energy (0–20 eV) Electron Impact. Ber Bunsenges Phys Chem 86: 321–326CrossRefGoogle Scholar
  69. 69.
    Illenberger E (1982) Energetics of Negative Ion Formation in Dissociative Attachment. Ber Bunsenges Phys Chem 86: 252–261CrossRefGoogle Scholar
  70. 70.
    Heni M, Illenberger E (1986) Dissociative Electron Attachment to CF3I: An Example of a Completely Unbalanced Excess Energy Distribution. Chem Phys Lett 131: 314–318Google Scholar
  71. 71.
    Klein R; McGinnis RP, Leone SR (1983) Photodetachment Threshold of CN- by Laser Optogalvanic Spectroscopy. Chem Phys Lett 100: 475–478CrossRefGoogle Scholar
  72. 72.
    Heni M, Illenberger E, Lentz D (1986) The Isomers CF3NC and CF3CN. Formation and Dissociation of the Anions Formed on Electron Attachment. Int J Mass Spectrom Ion Proc 71: 199–210Google Scholar
  73. 73.
    Heni M, Illenberger E (1986) Electron Attachment by Saturated Nitriles, Acrylonitrile (C2H3CN), and Benzonitrile (C6H5CN). Int J Mass Spectrom Ion Proc 73: 127–144CrossRefGoogle Scholar
  74. 74.
    Riley SJ, Wilson KR (1972) Excited Fragments from Excited Molecules: Energy Partitioning in the Photodissociation of Alkyl Iodides. Faraday Discuss Chem Soc 53: 132–153Google Scholar
  75. 75.
    Krajnovich D, Butler LJ, Lee YT (1984) Photodissociation of C2F5Br, C2F5I and 1,2-C2F4BrI. J Chem Phys 81: 3031–3047CrossRefGoogle Scholar
  76. 76.
    Fenzlaff HP, Kühn A, Illenberger E (1988) Formation and Dissociation of Negative Ion Resonances in Methanol and Allylalcohol. J Chem Phys 88: 7453–7458CrossRefGoogle Scholar
  77. 77.
    Weast RC (ed) (1985) Handbook of Chemistry and Physics, 66th edn. CRC Press, Boca Raton, FloridaGoogle Scholar
  78. 78.
    von Trepka L, Neuert H (1963) Über die Entstehung von negativen Ionen aus einigen Kohlenwasserstoffen and Alkoholen durch ElektronenbeschuB. Z Naturforsch 18: 1295–1303Google Scholar
  79. 79.
    Illenberger E, Baumgärtel H, Süzer S (1984) Electron Attachment Spectroscopy: Formation and Dissociation of Negative Ions in the Fluoroethylenes. J Electron Spectrosc Relat Phen 33: 123–139Google Scholar
  80. 80.
    Illenberger E (1981) Measurement of the Translational Excess Energy in Dissociative Electron Attachment Processes. Chem Phys Lett 80: 153–158CrossRefGoogle Scholar
  81. 81.
    Christophorou LG (1987) Electron Attachment and Detachment Processes in Electronegative Gases. Contrib Plasma Phys 27: 238–281Google Scholar
  82. 82.
    Henderson WR, Fite WL, Brackmann RT (1969) Dissociative Attachment to Hot Oxygen. Phys Rev 183: 157–166CrossRefGoogle Scholar
  83. 83.
    O’Malley TF (1966) Calculation of Dissociative Attachment in Hot 02. Phys Rev 155: 59–63CrossRefGoogle Scholar
  84. 84.
    Allan M, Wong SF (1978) Effect of Vibrational and Rotational Excitation on Dissociative Attachment in Hydrogen. Phys Rev Lett 41: 1791–1794CrossRefGoogle Scholar
  85. 85.
    Chen JCY, Peacher JL (1967) Survival Probability in Dissociative Attachment. Phys Rev 163: 103–111CrossRefGoogle Scholar
  86. 86.
    Wadehra JM, Bradsley JN (1978) Vibrational-and Rotational-State Dependence of Dissociative Attachment in e—H2 Collisions. Phys Rev Lett 26: 1795–1798CrossRefGoogle Scholar
  87. 87.
    Domcke W, Mündel C (1985) Calculation of Cross Sections for Vibrational Excitation and Dissociative Attachment in HC1 and DC1 Beyond the Local Complex-Potential Approximation. J Phys B 18: 4491–4509CrossRefGoogle Scholar
  88. 88.
    Burrow PD (1973) Dissociative Attachment from the O2 (a’dg) State. J Chem Phys 59: 4922–4931CrossRefGoogle Scholar
  89. 89.
    Bottcher C, Buckley BD (1979) Dissociative Electron Attachment to the Metastable c3I7„ State of Molecular Hydrogen. J Phys B 12: 497–500CrossRefGoogle Scholar
  90. 90.
    Pinnaduwage LA, Christophorou LG, Hunter SR (1989) Optically Enhanced Electron Attachment to Thiophenol. J Chem Phys 90: 6275–6289CrossRefGoogle Scholar
  91. 91.
    Christophorou LG (1991) Electron-Excited Molecule Interactions, Invited General Lecture, XX International Conference on Phenomene in Ionized Gases. Il Ciocco, Italy (in press)Google Scholar
  92. 92.
    Jaffke T, Meinke M, Hashemi R, Christophoron LG, Illenberger E (1992) Electron Attachment to Singlet Oxygen. Chem Phys Lett (in press)Google Scholar
  93. 93.
    Christophoron LG, Illenberger E (1992) Scattering of Slow Electrons from Excited Atoms: The Dominant Role of the Polarization Potential. Chem Phys Lett (submitted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Eugen Illenberger
    • 1
  • Jacques Momigny
    • 2
  1. 1.Institut für Physikalische und Theoretische ChemieFreien Universität BerlinBerlin 33Germany
  2. 2.Institut de Chimie Département de Chimie Générale et de Chimie-PhysiqueUniversité de LiègeLiège 1Belgium

Personalised recommendations