Advertisement

Gas Extraction pp 313-382 | Cite as

Chromatography with Supercritical Fluids (Supercritical Fluid Chromatography, SFC)

  • Gerd Brunner
Part of the Topics in Physical Chemistry book series (TOPPHYSCHEM, volume 4)

Abstract

In a chromatographic separation a mixture of substances is transported by a carrier, called mobile phase, along a not moving surface, called stationary phase. Chromatography is therefore a separation based on two mass separating agents: the mobile phase and the stationary phase. Between the two phases mass transfer processes take place, which lead to a different transport velocity along the surface of the stationary phase for the different components of a mixture. The components reach the end of the stationary phase at different times and can be detected and collected separately.

Keywords

Stationary Phase Chromatographic Separation Capacity Factor Supercritical Fluid Chromatography Capacity Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alkio M, Harvala T, Komppa V (1988) Preparative scale supercritical fluid chromatography. In: Perrut M (ed) Proc 2nd Int Symposium on Supercritical Fluids, pp 389–396Google Scholar
  2. 2.
    Applied Chromatography Systems (1987) Instruction manual for evaporative analyzer model 750/14Google Scholar
  3. 3.
    Berger C, Perrut M (1988) Purification de Molecules d’interet biologique par Chromatografie Preparative Avec Eluant Supercritique. Technoscope Biofutur 25: 3–8Google Scholar
  4. 4.
    Bruns A, Berg D, Werner–Busse A (1988) Isolation of tocopherol homologues by preparative high–performance liquid chromatography. J Chromatogr 450: 111–113CrossRefGoogle Scholar
  5. 5.
    Coors U, Montag A (1988) Untersuchungen zur Stabilität des Tocopherolgehaltes pflanzlicher Öle. Fat Sci Technol 90:129–136Google Scholar
  6. 6.
    Deemter JJ van, Zuiderweg FJ, Klinkenberg A (1965) Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem Eng Sci 5: 271–289Google Scholar
  7. 7.
    Eble JE, Grob RL, Antle PE, Snyder LR (1987) Simplified description of high–performance liquid chromatographic separation under overload conditions, based on the Craig distribution model. III. Computer simulations for two co–eluting bands assuming a Langmuir isotherm. J Chromatogr 405: 1–29CrossRefGoogle Scholar
  8. 8.
    Gere D, Board R, Mc Manigill D (1982) Parameters of supercritical fluid chromatography using HPLC columns. Hewlett–Packard Publ 43–5953–1647, Avondale, Pennsylvania, pp 7–15Google Scholar
  9. 9.
    Golshan Shirazi S, Guiochon G (1989) Theoretical study of system peaks and elution profiles for large concentration bands in the case of a binary eluent containing a strongly sorbed additive. J Chromatogr 461:1–18CrossRefGoogle Scholar
  10. 10.
    Kern JR, Lokensgard DM, Manes LV, Matsuo M, Nakamura K (1988) Separation of the stereoisomers of an allenic E–Type prostaglandin. J Chromatogr 450: 233–240CrossRefGoogle Scholar
  11. 11.
    Klesper E, Leyendecker D (1986) Supercritical fluid chromatography: Retention and resolution. Intl Lab 16(9): 18–30Google Scholar
  12. 12.
    Knox JH, Pyper HM (1986) Framework for maximizing throughput in preparative liquid chromatography. J Chromatogr 363: 1–30CrossRefGoogle Scholar
  13. 13.
    Lee ML, Markides KE (eds) (1990) Analytical Supercritical Fluid Chromatography and Extraction. Chromatography Conferences, Provo, UtahGoogle Scholar
  14. 14.
    Leyendecker D, Leyendecker D, Schmitz FP, Klesper E (1986) Chromatographic behaviour of various eluents and eluent mixtures in the liquid and in the supercritical state. J Chromatogr 371: 93–107CrossRefGoogle Scholar
  15. 15.
    Lohmus M, Kirjanes I, Lopp M, Lille Ü (1988) Solvent selectivity in the resolution of some regioisomeric and diastereomeric prostaglandin intermediates on silica. J Chromatogr 449: 77–94CrossRefGoogle Scholar
  16. 16.
    Lohmus M, Lopp M, Lille Ü, Veisserik J (1988) Preparative liquid chromatographic separation of prostacyclin carba–analogues and their intermediates. J Chromatogr 450: 105–109CrossRefGoogle Scholar
  17. 17.
    Markides KE, Fields SM, Lee ML (1986) Capillary Supercritical Fluid Chromatography of Labile Carboxylic Acids. J Chromatogr Sci 24: 254–257CrossRefGoogle Scholar
  18. 18.
    Mollerup J, Staby A, Sloth HC (1992) Thermodynamics of supercritical fluid chromatography. 9th Int Symp on Prep and Ind Chromatography “PREP–92”, NancyGoogle Scholar
  19. 19.
    Martire DE, Boehm RE (1987) Unified molecular theory of chromatography and its application to supercritical fluid mobile phases. 1. Fluid–liquid (absorption) chromatography. J Phys Chem 91: 2433–2446CrossRefGoogle Scholar
  20. 20.
    Perrut M (1982) Demande de brevet francais, No. 82 09 649, 3 juin 1982Google Scholar
  21. 21.
    Perrut M (1983) Brevet europeen No. 00 99 765, 25. 05. 1983Google Scholar
  22. 22.
    Perrut M (1984) US patent, No. 44 78 720, Oct. 23, 1984Google Scholar
  23. 23.
    Pickel KH (1986) Chromatografische Untersuchungen mit hochkompressiblen mobilen Phasen. Dissertation, Universität Erlangen–NürnbergGoogle Scholar
  24. 24.
    Randall LG (1984) Carbon dioxide based supercritical fluid chromatography. Column efficiencies and mobile phase solvent powers. In: ACS Symposium Series 250: 135–169Google Scholar
  25. 25.
    Saito M, Yamauchi Y, Hondo T, Senda M (1988) Laboratory Scale Preparative Supercritical Fluid Chromatography in Recycle Operation: Instrumentation and Applications. In: Perrut M (ed) Proc 2nd Int Symposium on Supercritical Fluids, pp 381–388Google Scholar
  26. 26.
    Saito M, Yamauchi Y (1988) Recycle chromatography with supercritical carbon dioxide as mobile phase. HRC & CC 11: 741 -743CrossRefGoogle Scholar
  27. 27.
    Saito M, Yamauchi Y, Inomata K, Kottkamp W (1989) Enrichment of tocopherols in wheat germ by directly coupled supercritical fluid extraction with semi–preparative supercritical fluid chromatography. J Chromatogr Sci 27: 79–85CrossRefGoogle Scholar
  28. 28.
    Saito M, Yamauchi Y (1990) Isolation of tocopherols from wheat germ oil by recycle semi–preparative supercritical fluid chromatography. J Chromatogr 505: 257–271CrossRefGoogle Scholar
  29. 29.
    Schoenmakers PJ, Verhoeven FCCJG (1986) Effect of pressure on retention in supercritical fluid chromatography with packed columns. J Chromatogr 352: 315–328CrossRefGoogle Scholar
  30. 30.
    Schoenmakers PJ, Uunk LG (1987) Supercritical fluid chromatography — recent and future developments. Eur Chromatogr News 13: 14–22Google Scholar
  31. 31.
    Smith RM (ed) (1988) Supercritical Fluid Chromatography. Roy Soc Chem, LondonGoogle Scholar
  32. 32.
    Snyder LR, Cox GB, Antle PE (1987) A simplified description of HPLC separation under overload conditions. A synthesis and extension of two recent approaches. Chromatographia 24: 82–96CrossRefGoogle Scholar
  33. 33.
    Upnmoor D, Brunner G (1989) Investigation of retention behaviour on packed column SFC. Ber Bunsenges Phys Chem 93: 1009–1015CrossRefGoogle Scholar
  34. 34.
    Upnmoor D, Brunner G (1989) Anwendungen der Fluidchromatographie (SFC) in der on–line Analytik. GIT Fachz Lab 33: 311–317Google Scholar
  35. 35.
    Upnmoor D, Brunner G (1989) Retention of acidic and basic compounds in packed column supercritical fluid chromatography. Chromatographia 28: 449–454CrossRefGoogle Scholar
  36. 36.
    Upnmoor D, Brunner G (1992) Packed column supercritical fluid chromatography with light scattering detection. I. Optimization of parameters with a carbon dioxide/methanol mobile phase. Chromatographia 33: 255–260CrossRefGoogle Scholar
  37. 37.
    Upnmoor D, Brunner G (1992) Packed column supercritical fluid chromatography with light scattering detection. II. Retention behaviour of squalene and glucose with mixed mobile phases. Chromatographia 33: 261–266CrossRefGoogle Scholar
  38. 38.
    Upnmoor D (1992) Untersuchungen zur präparativen Fluidchromatographie am Beispiel von Tocopherolen und Prostaglandinen. Dissertation, Technische Universität Hamburg–HarburgGoogle Scholar
  39. 39.
    Wenclawiak B (ed) (1992) Analysis With Supercritical Fluids: Extraction and Chromatography. Springer, Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona BudapestGoogle Scholar
  40. 40.
    White CM (ed) (1988) Modern Supercritical Fluid Chromatography. Hüthig, Heidelberg Basel New YorkGoogle Scholar
  41. 41.
    Yamauchi Y, Saito M, Hondo T, Senda M, Milet JL, Castiglioni E (1988) Coupled supercritical fluid extraction — supercritical fluid chromatography using pre–concentration/separation column: Application to fractionation of lemon peel oil. In: Perrut M (ed) Proc 2nd Int Symposium on Supercritical Fluids, pp 381–388Google Scholar
  42. 42.
    Yamauchi Y, Saito M (1990) Fractionation of lemon–peel oil by semi–preparative supercritical fluid chromatography. J Chromatogr 505: 237–246CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Gerd Brunner
    • 1
  1. 1.Arbeitsbereich Verfahrenstechnik IITechnische Universität Hamburg-HarburgHamburgDeutschland

Personalised recommendations