Gallopamil pp 81-87 | Cite as

Antihypoxic Effect of Gallopamil in the Brain

  • A. G. B. Kovách
  • E. Dora
  • A. Koller
Conference paper


There are many reports on the peripheral vasodilator properties of verapamil and gallopamil. A few studies have also been carried out on cerebral vessels; these are mainly studies in vitro on basilar artery strips (for review of literature see Flaim 1982). In 1973 Vlahov and Enzenross reported that the constriction of feline pia vessels induced in vivo by reducing the pH was inhibited by local administration of gallopamil (D 600) in concentrations upwards of 1 mg/1. In contrast, the effects of verapamil and gallopamil on metabolic reactions in the brain have not been investigated hitherto. This study was made to compare the effect of gallopamil and verapamil on cerebrocortical blood flow and energy metabolism with that of adenosine.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berne RM, Rubio R, Curnish RR (1974) Release of adenosine from ischemic brain. Effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circ Res 35: 262–271CrossRefGoogle Scholar
  2. Brandt L, Andersson KE, Edvinsson L, Ljunggren B (1981) Effects of extracellular calcium antagonists on the contractile responses of isolated human pial and mesenteric arteries. J Cereb Blood Flow Metabol 1: 339–347CrossRefGoogle Scholar
  3. Dora E, Kovách AGB (1982) Effect of acute arterial hypo- and hypertensin on cerebrocortical NAD/NADH redox state and vascular volume. J Cereb Blood Flow Metabol. Im DruckGoogle Scholar
  4. Dutta P, Mustafa SJ, Jones AW (1980) Effect of adenosine on the uptake and efflux of calcium by coronary arteries of dog (abstract). Federation Proc 39: 530Google Scholar
  5. Fenton PA, Bruttig SP, Rubio R, Berne RM (1982) Effect of adenosine on calcium uptake by intact and cultured vascular smooth muscle. Am J Physiol 242: H707–H804Google Scholar
  6. Flaim SF (1982) Comparative pharmacology of calcium blockers based on studies of vascular smooth muscle. In: Flaim SF, Zelis R, (Hrsg.) Calcium blockers — mechanisms of action and clinical applications. Urban & Schwarzenberg, Baltimore MünchenGoogle Scholar
  7. Harper AM, Craigen L, Kazda S (1981) Effect of the calcium antagonist, nimodipine, on cerebral blood flow and metabolism in the primate. J Cereb Blood Flow Metabol 1: 349–356CrossRefGoogle Scholar
  8. Hayashi S, Toda N (1977) Inhibition by Cd++, verapamil and papaverine of Ca++-induced concentrations in isolated cerebral and peripheral arteries of the dog. Br J Pharmac 60: 35–43CrossRefGoogle Scholar
  9. Huang M, Drummond GI (1979) Adenylate cyclase in cerebral microvessels: action of guanine nucleotides, adenosine, and other antagonists. Mol. Pharmacol. 16: 462–472PubMedGoogle Scholar
  10. Ibrahim MZM (1975) Glycogen and its related enzymes of metabolism in the central nervous system. Adv Anat Embryol Cell Biol 52:1–84Google Scholar
  11. Kovâch AGB, Dora E, Szedlacsek S, Koller A (1982) Effect of organic calcium antagonist, D 600, on cerebrocortical vascular and metabolic responses evoked by adenosine, anoxia and epilepsy. J Cereb Blood Flow Metabol, im DruckGoogle Scholar
  12. McCalden TA, Bevan JA (1981) Sources of activator calcium in rabbit basilar artery. Am J Physiol 241:H129–H133Google Scholar
  13. 2. Alexander JE, Seibert JJ, Glasier CM et al. (1989) Highresolution hip ultrasound in the limping child. J Clin Ultrasound 17: 19, Nasuya Y (1980) Selective abolition of Ca-dependent responses of smooth and cardiac muscles by flunarizine. Japan J Pharmacol 30: 731–742CrossRefGoogle Scholar
  14. Nawrath H, Blei J, Gegner R, Ludwig Ch, Zong X (1981) No stereospecific effects of the optical isomers of verapamil and D 600 on the heart. In: Zanchetti A, Krikler OM (Hrsg.): Calcium antagonism in cardiovascular therapy. Excerpta medica, Amsterdam Oxford PrincetonGoogle Scholar
  15. Nimit Y, Skolnick P, Daly JW (1981) Adenosine and cyclic AMP in rat cerebral cortical slices: effects of adenosine uptake inhibitors and adenosine deaminase inhibitors. J Neurochem 36: 908–912PubMedCrossRefGoogle Scholar
  16. Siesjö BK (1978) Brain Energy Metabolism. John Wiley & Sons, Chichester New York Brisbane TorontoGoogle Scholar
  17. Siesjö BK (1981) Cell damage in the brain: A speculative synthesis. J Cereb Blood Flow Metabol 1: 155CrossRefGoogle Scholar
  18. Verhaeghe RH (1977) Action of adenosine and adenine nucleotides on dog’s isolated veins. Am J Physiol 233: H114–H121Google Scholar
  19. Ververken D, Van Veldhoven P, Proost C, Carton H, De Wulf H (1982) On the role of calcium ions in the regulation of glycogenosis in mouse brain cortical slices. J Neurochem 38: 1286–1295PubMedCrossRefGoogle Scholar
  20. Vlahov V, Enzenross HG (1973) Einfluß der Ca++-Ionen auf die Kontraktilität der glatten Muskulatur von Piagefäßen. Verh Dtsch Ges Kreislaufforsch 39:129–132PubMedCrossRefGoogle Scholar
  21. Wahl M, Kuschinsky W (1976) The dilatatory action of adenosine on pial arteries of cats and its inhibition by theophylline. Pflügers Arch 362: 55–59PubMedCrossRefGoogle Scholar
  22. Winn RH, Rubio R, Berne RM (1981) Brain adenosine concentration during hypoxia in rats. Am J Physiol 241: H235–H242Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • A. G. B. Kovách
  • E. Dora
  • A. Koller

There are no affiliations available

Personalised recommendations