Skip to main content

Grundlagen

  • Chapter
  • 56 Accesses

Part of the book series: Halbleiter-Elektronik ((HALBLEITER,volume 16))

Zusammenfassung

Ein Feldeffekttransistor ist ein Halbleiterbauelement mit drei Anschlüssen — Source, Drain und Gate — , bei dem der Stromfluß zwischen Source und Drain durch ein zum Stromfluß transversales elektrisches Feld, das von der Gateelektrode ausgeht, gesteuert wird. Da am Stromtransport nur bewegliche Ladungsträger eines Typs (Elektronen oder Löcher) beteiligt sind, spricht man hier auch von unipolaren Transistoren. In bipolaren Transistoren dagegen nehmen sowohl Elektronen als auch Löcher am Stromtransport teil. Band 6 dieser Buchreihe behandelt diese Transistoren.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

Literatur zu 2.1 und 2.2

  1. Liechti, C. A.: Microwave field-effect transistors 1976. IEEE Trans. MTT-24 (1976) 279–300.

    Google Scholar 

  2. Oakes, J. G.; Wickstrom, R. A.; Tremere, D. A.; Heng, T. M. S.: A power silicon MOS transistor. IEEE Trans. MTT-24 (1976) 305–311.

    Google Scholar 

  3. Sigg, H. J.; Vendelin, G. D.; Cauge, T. P.; Kocsis, I.: D-MOS transistor for microwave application. IEEE Trans. ED-19 (1972) 45–53.

    Google Scholar 

  4. Ronen, R.; Strauss, L.: The silicon-on-sapphive MOS tetrode, some small signal features LF to UHF. IEEE Trans. ED-21 (1974) 100–109.

    Google Scholar 

  5. Teszner, S.: Gridistor development for the microwave power region. IEEE Trans. ED-19 (1972) 355–364.

    Google Scholar 

  6. Nishizawa, J.-I.; Terasaki, T.; Shibata, J.: Field-effect transistor versus analog transistor (static induction transistor). IEEE Trans. ED-22 (1975) 186–197.

    Google Scholar 

  7. Aiga, M.; Higaki, Y.; Kato, M.; Kajiwara, Y.; Yukimoto, Y.; Shirahata, K.: 1 GHz 100 W internally matched static induction transistor. Proc. 9th Europ. Microwave Conf. Brighton, Sept. 1979, 561–565.

    Google Scholar 

  8. Shockley, W.: Transistor electronics: Imperfections, unipolar and analog transistors. Proc. IRE 40 (1952) 1289–1313.

    Article  Google Scholar 

  9. Bozler, C. O.; Alley, G. D.: Fabrication and numerical simulation of the permeable base transistor. IEEE Trans. ED-27 (1980) 1128–1141.

    Google Scholar 

  10. Vergnolle, C.; Funck, R.; Laviron, M.: An adequate structure for power microwave FETs. Int. Solid State Circuits Conf. Dig. Tech. Pap. 1975, pp. 66/67.

    Google Scholar 

  11. Umebachi, S.; Asahi, K.; Inone, M.; Kano, G.: A new heterojunction gate GaAs FET. IEEE Trans. ED-22 (1975) 613–614.

    Google Scholar 

  12. Baechtold, W.; Daetwyler, K.; Forster, T.; Mohr, T. O.; Walter, W.; Wolf, P.: Si and GaAs 0,5 µm-gate Schottkybarrier field-effect transistors. Electron. Lett. 9 (1973) 232–234.

    Article  Google Scholar 

  13. Darley, H. M.; Houston, T. W.; Taylor, G. W.: Fabrication and performance of submicron silicon MESFET. Int. Electron. Dev. Meet. Tech. Dig. (1978) 62–65.

    Google Scholar 

  14. Barrera, J.; Archer, R.: InP Schottky-gate field-effect transistors. IEEE Trans. ED-22 (1975) 1023–1030.

    Google Scholar 

  15. Decker, D.; Fairman, R.; Nishimoto, C.: Microwave InGaAs Schottky-barrier gate field-effect transistors. Proc. 5th Biennial Cornell Electr. Eng. Conf. Cornell Univ. Ithaca/N.Y., Aug. 1975, pp. 305–314.

    Google Scholar 

  16. Ishibashi, T.: InP MESFET with In0 53 Ga0.47 As/InP heterostructure contacts. Electron. Lett. 17 (1981) 215–216.

    Article  Google Scholar 

  17. Gleason, K. R.; Dietrich, H. B.; Henry, R. L.; Cohen, E. D.; Barle, M. L.: Ion-implanted n-channel InP metal semiconductor field-effect transistor. Appl. Phys. Lett. 32 (1978) 578–581.

    Article  Google Scholar 

  18. Morkoc, H.; Bandy, S. G.; Sankaran, R.; Antypas, G. N.; Bell, R. L.: A study of high-speed normally off and normally on Al0.5 Ga0.5 As heterojunction gate GaAs FETs (HJFET). IEEE Trans. ED-25 (1978) 619–627.

    Google Scholar 

  19. Mimura, T.; Hiyamizu, S.; Joshin, K.; Hikosaka, K.: Enhancement mode high electron mobility transistors for logic applications. Jpn. J. Appl. Phys. 20 (1981) L317–319.

    Article  Google Scholar 

Literatur zu 2.3

  1. Cowley, A. M.; Sze, S. M.: Surface states and barrier height of metal semiconductor systems. J. Appl. Phys. 36 (1952) 3212–3220.

    Article  Google Scholar 

  2. Sze, S. M.; Crowell, C. R.; Kahng, D.: Photoelectric determination of the image force dielectric constant for hot electrons in Schottky barriers. J. Appl. Phys. 35 (1964) 2534–2536.

    Article  Google Scholar 

  3. Mead, C. A.; Spitzer, W. G.: Fermi level position at metal-semiconductor interfaces. Phys. Rev. 134, 3A (1964) A713–716.

    Article  Google Scholar 

  4. Goodman, A. M.: Evaporated metallic contacts to conducting cadmium sulfide single crystals. J. Appl. Phys. 35 (1964) 573–580.

    Article  Google Scholar 

  5. Shockley, W.: On the surface states associated with a periodic potential. Phys. Rev. 56 (1939) 317–323.

    Article  MATH  Google Scholar 

  6. Mead, C. A.; Metal semiconductor surface barriers. Solid State Electron. 9 (1966) 1023–1032.

    Article  Google Scholar 

  7. Bethe, H. A.: Theory of the boundary layer of crystal rectifiers. MIT Radiat. Lab. (1942), Rep. 43–12.

    Google Scholar 

  8. Andrews, J. M.; Lepselter, M. P.: Reverse current-voltage characteristics of metal-silicide Schottky diodes. IEEE Solid State Device Conf. Washington, D.C., Oct. 1968.

    Google Scholar 

  9. Padovani, F. A.; Stratton, R.: Field and thermionicfield emission in Schottky barriers. Solid State Electron. 9 (1966) 695–707.

    Article  Google Scholar 

  10. Yu, A. Y. C.: The metal-semiconductor contact: an old device with a new future. IEEE Spectrum (March 1970) 83–89.

    Google Scholar 

Literatur zu 2.5

  1. Garret, C. G. B.; Brattain, W. H.: Physical theory of semiconductor surfaces. Phys. Rev. 99 (1955) 376–387.

    Article  Google Scholar 

  2. Grove, A. S.; Snow, E. H.; Sah, C. T.: Investigation of thermally oxidised silicon surfaces using metaloxide-semiconductor structures. Solid State Electron. 8 (1965) 145–163.

    Article  Google Scholar 

  3. Grove, A. S.; Snow, E. H.; Sah, C. T.: Simple physical model for the space-charge capacitance of metal-oxidesemiconductor structures. J. Appl. Phys. 35 (1964) 2458–2460.

    Article  Google Scholar 

  4. Deal, B. E.; Sklar, M.; Grove, A. S.; Snow, E. H.: Characteristics of the surface-state charge (Qss) of thermally oxidised silicon. J. Electrochem. Soc. 114 (1967) 266–274.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kellner, W., Kniepkamp, H. (1985). Grundlagen. In: GaAs-Feldeffekttransistoren. Halbleiter-Elektronik, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07363-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07363-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13763-4

  • Online ISBN: 978-3-662-07363-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics