Lipids of Mycorrhizae

  • M. Sancholle
  • Y. Dalpé
  • A. Grandmougin-Ferjani
Part of the The Mycota book series (MYCOTA, volume 9)


Research dealing with the composition, diversity and role of lipids in mycorrhizal associations has, during the past decades, attracted the interest of an increasing number of investigators from diverse disciplines. First considered as a biochemical tool for the quantitative evaluation of mycorrhizae in a given system (Seitz et al. 1979; Salmanowicz and Nylund 1988; Salmanowicz et al. 1990; Schmitz et al. 1991; Davis and Lamar 1992; Nylund and Wallender 1992; Bermingham et al. 1995; Olsson et al. 1995), the composition and the transformation of plant and fungal lipids during the establishment of the symbiosis has been gradually pursued (Olsson et al. 1998) and is now, to a certain extent, considered as a potential biochemical approach for the comprehension of evolutionary (Bentivenga and Morton 1994a; Weete and Gandhi 1997) and chemotaxonomic studies (Sancholle and Dalpe 1993; Bentivenga and Morton 1994b; Graham et al. 1995, GrandmouginFerjani et al. 1996, 1999).


Arbuscular Mycorrhizal Fungus Mycorrhizal Fungus Root Colonization Fungal Biomass Ectomycorrhizal Fungus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aho L, Kurkela R (1978) Free fatty acids of some wood mushrooms. Nahrung 7:603–607CrossRefGoogle Scholar
  2. Al-Karaki GN, Al-Raddad A, Clark RB (1998) Water stress and mycorrhizal isolate effect on growth and nutrient acquisition of wheat. J Plant Nutr 21:891–902CrossRefGoogle Scholar
  3. Allen WK, Allaway WG, Cox GC, Valder PG (1989) Ultra-structure of mycorrhizas of Dracophyllum secundum R. Br. (Ericales: Epacridaceae). Aust J Plant Physiol 16:147–153CrossRefGoogle Scholar
  4. Al-Shabibi MMA, Toma SJ, Haddad BA (1982) Studies of Iraqi truffles. I. Proximate analysis and characterization of lipids. Can Inst Food Sci Technol J 15:200–202Google Scholar
  5. Amijee F, Stribley DP (1987) Soluble carbohydrates of vesicular-arbuscular mycorrhizal fungi. Mycologist 21:20–21CrossRefGoogle Scholar
  6. Antibus RK, Sinsabaugh RL (1993) The extraction and quantification of ergosterol from ectomycorrhizal fungi and roots. Mycorrhiza 3:137–144CrossRefGoogle Scholar
  7. Asselineau J (1966) Bacterial lipids. Hermann, ParisGoogle Scholar
  8. Baath E, Frostegaard A, Fritze H (1992) Soil bacterial biomass, activity, phospholipid fatty acid pattern, and pH tolerance in an area polluted with alkaline dust deposition. Appl Environ Microbiol 58:4026–4031PubMedGoogle Scholar
  9. Bago B, Donaire JP, Azcon-Aguilar C (1995) Biochemical characterization of membranes in arbuscular mycorrhiza: fatty acid analysis. In: 4th Eur Symp on Mycorrhizae, Granada, Spain (11–14 July 1994) pp 211–214Google Scholar
  10. Barroso J, Neves HC, Pais MSS (1986) Isolation and chemical characterisation of odd fatty acids present in Ophrys lutea roots during invasion by the endophyte. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA Dijon, pp 437–440Google Scholar
  11. Barroso J, Neves HC, Pais MSS (1987) Production of free sterols by infected tubers of Ophrys lutea Con.: identification by gas chromatography-mass spectrometry. New Phytol 106:147–152CrossRefGoogle Scholar
  12. Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218CrossRefGoogle Scholar
  13. Bécard G, Piché Y (1988) New aspects on the acquisition of biotrophic status by a vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 112:77–83CrossRefGoogle Scholar
  14. Bécard G, Piché Y (1992) Establishment of vesicular-arbuscular mycorrhiza in root organ culture: review and proposed methodology. Methods in microbiology, vol 24. pp 90–108CrossRefGoogle Scholar
  15. Beilby JP (1980) Fatty acid and sterol composition of ungerminated spores of the vesicular arbuscular mycorrhizal fungus Acaulospora laevis. Lipids 15:949–952CrossRefGoogle Scholar
  16. Beilby JP (1983) Effects of inhibitors on early protein, RNA, and lipid synthesis in germinating vesicular-arbuscular mycorrhizal fungal spores of Glomus caledonium. Can J Microbiol 29:96–601CrossRefGoogle Scholar
  17. Beilby JP, Kidby DK (1980) Biochemistry of ungerminated and germinated spores of the vesicular-arbuscular mycorrhizal fungus, Glomus caledonium: changes in neutral and polar lipids. J Lipid Res 21:739–750PubMedGoogle Scholar
  18. Bentivenga SP, Morton JB (1994a) Stability and heritabil-ity of fatty acid methyl ester profiles of glomalean endomycorrhizal fungi. Mycol Res 98:1419–1426CrossRefGoogle Scholar
  19. Bentivenga SP, Morton JB (1994b) Congruence of fatty acid methyl ester profiles and morphological characters of arbuscular mycorrhizal fungi in Gigasporaceae. Proc Natl Acad Sci USA 93:659–662Google Scholar
  20. Bermingham S, Maltby L, Cooke RC (1995) A critical assessment of the validity of ergosterol as an indicator of fungal biomass. Mycol Res 99:479–484CrossRefGoogle Scholar
  21. Bethlenfalvay GJ, Mihara KL, Schreiner RP (1994) Myc-orrhizae alter protein and lipid contents and yield of pea seeds. Crop Sci 34:998–1003CrossRefGoogle Scholar
  22. Bethlenfalvay GJ, Schreiner RP, Mihara KL (1997) Mycorrhizal fungi effect on nutrient composition and yield of soybean seeds. J Plant Nutr 20:581–591CrossRefGoogle Scholar
  23. Bevege DI, Bowen GD, Skinner MF (1975) Comparative carbohydrate physiology of ecto and endomycor-rhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 149–174Google Scholar
  24. Birraux D, Fries N (1981) Germination of Thelephora terrestris basidiospores. Can J Bot 59:2062–2064CrossRefGoogle Scholar
  25. Blom J (1981) Utilization of fatty acids and NH4 by Frankia AvcII. FEMS Microbiol Lett 10:143–145CrossRefGoogle Scholar
  26. Blom J (1983) Carbon and nitrogen source requirements of Frankia strains. FEMS Microbiol Lett 13:51–55CrossRefGoogle Scholar
  27. Bokhary HA, Parvez S (1993) Chemical composition of desert truffles Terfezia claveryi. J Food Compos Anal 3:285–293CrossRefGoogle Scholar
  28. Bonfante-Fasolo P, Scannerini S (1977) Cytological observations on the mycorrhiza Endogone flammicorona -Pinus strobus. Allionia 22:23–54Google Scholar
  29. Bonfante-Fasolo P, Grippiolo R (1984) Cytochemical and biochemical observations on the cell wall of the spore of Glomus epigaeum. Protoplasma 123:140–151CrossRefGoogle Scholar
  30. Bonfante-Fasolo P, Schubert A (1987) Spore wall architecture of Glomus spp. Can J Bot 65:539–546CrossRefGoogle Scholar
  31. Boullard B (1957) La mycotrophie chez les ptéridophytes. Sa fréquence, ses caractères, sa signification. Botaniste 45:5–185Google Scholar
  32. Brussaard L, Behan-Pelletier VM, Bigneil DE, Brown VK, Didden W, Folgarait P, Fragoso C, Wall D, Gupta VSR, Hattori T, Hawksworth DL, Klopatek C, Lavelle P, Malloch DW, Rusek J, Söderstrom B, Tiedje JM, Ross AV (1997) Biodiversity and ecosystem functioning in soil. Ambio 26:563–570Google Scholar
  33. Burden RS, Cooke DT, Carter GA (1989) Inhibitors of sterol biosynthesis and growth in plants and fungi. Phytochemistry 28:1791–1804CrossRefGoogle Scholar
  34. Caldwell BA, Castellano MA, Griffiths RP (1991) Fatty acid esterase production by ectomycorrhizal fungi. Mycologia 83:233–236CrossRefGoogle Scholar
  35. Caporn SJM, Song W, Read DJ, Lee JA (1995) The effect of repeated nitrogen fertilization on mycorrhizal infection in heather Calluna vulgaris (L.) Hull. New Phytol 129:605–609CrossRefGoogle Scholar
  36. Casana M, Bonfante-Fasolo P (1982) Intercellular and arbuscular hyphae of Glomus fasciculatum (Thaxter) Gerd. and Trappe isolated after enzymic maceration. Allionia 25:17–25Google Scholar
  37. Cerri R, De Simone F, Senatore F (1981) Sterols of three Lactarius species. Biochem Syst Ecol 19:247–248CrossRefGoogle Scholar
  38. Chen Xy, Hampp R (1993) Sugar uptake by protoplasts of the ectomycorrhizal fungus, Amanita muscaria (L. ex. Fr.) Hokler. New Phytol 125:601–608CrossRefGoogle Scholar
  39. Cooke RC, Rayner ADM (1984) Ecology of saprophytic fungi. Longman, LondonGoogle Scholar
  40. Cooper KM, Lösel DM (1978) Lipid physiology of vesicular-arbuscular mycorrhiza. I. Composition of lipids in roots of onion, clover and ryegrass infected with Glomus mosseae. New Phytol 80:143–151CrossRefGoogle Scholar
  41. Cordell CE, Marx DH (1994) Effects of nursery cultural practices on management of specific ectomycorrhizae on bare root seedlings. In: Pfleger FL, Lindermann RG (eds) Mycorrhizae and plant health St. Paul (Minnesota). APS Press, pp 133–151Google Scholar
  42. Cox G, Sanders FE, Tinker PB, Wild JA (1975) Ultrastructural evidence relating to host-endophyte transfer in a vesicular-arbusular mycorrhiza. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 297–311Google Scholar
  43. Dalpé Y, Neumann PJ (1977) L’induction chez Ceratocystis de fructifications de types Graphium et Leptographium par des acides gras insaturés. Can J Bot 55:2159–2167CrossRefGoogle Scholar
  44. Davis MW, Lamar RT (1992) Evaluation of methods to extract ergosterol for quantification of soil fungal biomass. Soil Biol Biochem 24:189–198CrossRefGoogle Scholar
  45. De Kok LJ, Kuiper PJC, Bruins AP (1982) A polyunsaturated octadecanoic acid derivative, a major fatty acid in sporophores of Cantharellus cibarius Fr. In: Wintermans JFGM, Kuiper PJC (eds) Biochemistry and metabolism of plant lipids. Elsevier, Amsterdam, pp 47–50Google Scholar
  46. Dell B, Malajczuk N, Thompson GT (1990) Ectomycorrhiza formation in Eucalyptus: VA tuberculate ectomycorrhiza of Eucalyptus pilularis. New Phytol 114:633–640CrossRefGoogle Scholar
  47. Dembitskii VM, Pechenkina EE (1991) Phospholipid and fatty acid compositions of higher fungi. Chem Nat Compd 27:155–156CrossRefGoogle Scholar
  48. De Simone F, Senatore F, Sica D, Zollo F (1979) Sterols from Badisiomycetes. Phytochemistry 18: 1572–1573CrossRefGoogle Scholar
  49. Despaties S, Furlan V, Fortin JA (1989) Effects of successive applications of fosetyl-Al on growth of Allium cepa L. associated with endomycorrhizal fungi. Plant Soil 113:175–180CrossRefGoogle Scholar
  50. Dijkstra FI, Scheffers WA, Wiken TO (1972) Submerged growth of the cultivated mushroom Agaricus bisporus. Antonie van Leeuwenhoek Microbiol Serol 38: 329–340CrossRefGoogle Scholar
  51. Diop TA, Plenchette C, Strullu DG (1994) Dual axenic culture of sheared-root inocula of vesicular-arbuscular. Mycorrhiza 5:17–22CrossRefGoogle Scholar
  52. Dodd JC, Jeffries P (1989) Effects of fungicides on three vesicular-arbuscular mycorrhizal fungi associated with winter wheat (Triticum aestivum L.). Biol Fertil Soils 7:120–128CrossRefGoogle Scholar
  53. Douds DD Jr, Johnson CR, Koch KE (1988) Carbon cost of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis. Plant Physiol 86:491–496CrossRefPubMedGoogle Scholar
  54. Dugassa GD, Von Alten H, Schönbeck F (1996) Effects of arbuscular mycorrhiza (AM) on health of Linum usitatissimum L. infected by fungal pathogens. Plant Soil 185:173–182CrossRefGoogle Scholar
  55. Dzamic M, Miljkovic B, Zoric D (1985) Dry matter carbohydrates and lipids in some edible mushrooms in Toplica country, Yugoslavia. Agrohemija 0:143–158Google Scholar
  56. Edwards HH, Gessner RV (1984) Light microscopy and transmission electron microscopy of English oak (Quercus robur) ectomycorrhizal short roots. Can J Bot 62:1327–1335CrossRefGoogle Scholar
  57. Eissenstat DM, Graham JH, Syvertsen JP, Drouillard DL (1993) Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus status. Ann Bot (Lond) 71:1–10CrossRefGoogle Scholar
  58. Ekblad ALF, Wallander H, Carlsson R, Huss-Danell K (1995) Fungal biomass in roots and extramatrical mycelium in relation to macronutrients and plant biomass of ectomycorrhizal Pinus sylvestris and Alnus incana. New Phytol 131:443–451CrossRefGoogle Scholar
  59. Elliott CG (1977) Sterols in fungi. Their function in fungal growth and reproduction. Adv Microb Physiol 15:121–173CrossRefPubMedGoogle Scholar
  60. Endo S, Zhiping G, Takagi T (1991) Lipid components of seven species of Basidiomycotina and three species of Ascomycotina. J Jpn Oil Chem Soc 40:574–577CrossRefGoogle Scholar
  61. Fanelli C, Fabbri AA, Passi S (1980) Growth requirements and lipid metabolism of Aspergillus flavus. Trans Br Mycol Soc 75:371–375CrossRefGoogle Scholar
  62. Fontaine J, Grandmougin-Ferjani A, Hartmann MA, Sancholle M (1998) Is the vesicular arbuscular mycorrhizal fungus Glomus intraradices able to synthesize its own lipids? In: Sanchez J, Cerra-Olmedo E, Martinez-Force E (eds) Advances on Plant Lipid Research. Universidad de Sevilla. Secretario de Pub-licaciones Sevilla, pp 560–563Google Scholar
  63. Fonvieille JL, Touzé-Soulet JM, Kulifaj M, Montant C, Dargent R (1990) The composition of ascopsores of Tuber melanosporum and of their isolated walls. CR Acad Sci III 30:557–563Google Scholar
  64. Fox FM (1986) Ultrastructure and infectivity of sclerotium-like bodies of the ectomycorrhizal fungus Hebeloma sacchariolens, on birch (Betula spp.). Trans Br Mycol Soc 87:359–369CrossRefGoogle Scholar
  65. Frankland JC, Harisson AF (1985) Mycorrhizal infection of Betula pendula and Acer pseudoplatanus: relationship with seedling growth and soil factors. New Phytol 101:108–112CrossRefGoogle Scholar
  66. Franz F, Acker G (1995) Rhizomorphs of Picea abies ecto-mycorrhizae: ultrastructural aspects and elemental analysis (EELS and ESI) on hyphal inclusions. Nova Hedwigia 60(1–2):253–267Google Scholar
  67. Frey B, Buse HR, Schüepp H (1992) Identification of ergos-terol in vesicular-arbuscular mycorrhizae. Biol Fertil Soils 13:229–234CrossRefGoogle Scholar
  68. Frey B, Vilarino A, Schüepp H, Arines J (1994) Chitin and ergosterol content of extraradical and intraradical mycelium of the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. Soil Biol Biochem 26:711–717CrossRefGoogle Scholar
  69. Fries N, Bardt M, Serck-Hanssen K (1985) Growth of ectomycorrhizal fungi stimulated by lipids from a pine root exudate. Plant Soil 86:287–290CrossRefGoogle Scholar
  70. Frostegaard A, Tunlid A, Baath E (1993) Phospholipids fatty acid composition biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617Google Scholar
  71. Gaspar ML, Pollero RJ (1994) Glomus antarcticum: the lipids and fatty acid composition. Mycotaxon 51: 129–136Google Scholar
  72. Gaspar ML, Pollero RJ, Cabello MN (1994) Triacylglycerol consumption during spore germination of vesicular-arbuscular mycorrhizal fungi. J Am Oil Chem Soc 71:449–452CrossRefGoogle Scholar
  73. Gaspar L, Pollero R, Cabello M (1997) Variations in the lipid composition of alfalfa roots during colonization with the arbuscular mycorrhizal fungus Glomus versiforme. Mycology 89:37–82CrossRefGoogle Scholar
  74. Gnekow M, Marschner H (1989) Role of VA mycorrhiza in growth and mineral nutrition of apple (Malus pumila var. domestica) rootstock cuttings. Plant Soil 119: 285–293CrossRefGoogle Scholar
  75. Graham JH, Hodge NC, Morton JB (1995) Fatty acid methyl ester profiles for characterization of glomalean fungi and their endomycorrhizae. Appl Environ Microbiol 61:58–64PubMedGoogle Scholar
  76. Graham JH, Drouillard DL, Hodge NC (1996) Carbon economy of sour orange in response to different Glomus spp. Tree Physiol 16:1023–1029CrossRefPubMedGoogle Scholar
  77. Graham JH, Duncan LW, Eissenstat DM (1997) Carbohydrate allocation patterns in citrus genotypes as affected by phosphorus nutrition, mycorrhizal colonization and mycorrhizal dependency. New Phytol 135:335–343CrossRefGoogle Scholar
  78. Grandmougin-Ferjani A, Dalpé Y, Veignie E, Hartmann MA, Rafin C, Sancholle M (1995) Infection by arbuscular mycorrhizal fungus Glomus mosseae of leek plants (Allium porrum L.) effects of lipids. In: Kader JC, Mazliak P (eds) Plant lipid metabolism. Kluwer, Dordrecht, pp 444–446Google Scholar
  79. Grandmougin-Ferjani A, Dalpé Y, Hartmann MA, Lamelle F, Couturier D, Sancholle M (1996) Taxonomic aspects of the sterol and 11-hexadecenoic acid (C16:1A11) distribution in arbuscular mycorrhizal spores. In: Williams JP, Khan MU, Lern NW (eds) Physiology, biochemistry and molecular biology of plant lipids. Kluwer, Dordrecht, pp 195–197Google Scholar
  80. Grandmougin-Ferjani A, Dalpé Y, Hartmann MA, Lamelle F, Sancholle M (1999) Sterol distribution in arbuscular mycorrhizal fungi. Phytochemistry 50:1027–1031CrossRefGoogle Scholar
  81. Grenville DJ, Peterson RL, Piché Y (1985a) The development, structure, and histochemistry of sclerotia of ectomycorrhizal fungi: I. Pisolithus tinctorius. Can J Bot 63:1402–1411CrossRefGoogle Scholar
  82. Grenville DJ, Peterson RL, Piché Y (1985b) The development, structure, and histochemistry of sclerotia of ectomycorrhizal fungi: II. Paxillus involutus. Can J Bot 63:1412–1417CrossRefGoogle Scholar
  83. Griffith JM, Davis AJ, Grant BR (1992) Target site of fungicides to control Oomycetes. In: Köller W (ed) Sites of fungicides action. CRC Press, Boca Raton, Fl, pp 69–100Google Scholar
  84. Hale MG, Moore LD, Orcutt DM (1981) Effects of gib-berellinA3 and 2,4-D on plant and root exudate lipids and susceptibility of Pythium muriotylum. Soil Biol Biochem 13:395–399CrossRefGoogle Scholar
  85. Hampp R, Schaeffer C, Wallenda T, Stulten C, Johann P, Einig W (1994) Changes in carbon partitioning of allocation due to ectomycorrhiza formation. Biochemical evidence. Can J Bot 73:448–556Google Scholar
  86. Harley JL (1989) The significance of mycorrhiza. Mycol Res 92:129–139CrossRefGoogle Scholar
  87. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  88. Harriott PT, Khairallah L, Benson DR (1991) Isolation and structure of the lipid envelopes from the nitrogen-fixing vesicles of Frankia sp. strain CpII. J Bacteriol 173:2061–2067PubMedGoogle Scholar
  89. Harris D, Pacovsky RS, Paul EA (1985) Carbon economy of soybean-Rhizobium-Glomus associations. New Phytol 101:427–440CrossRefGoogle Scholar
  90. Hepper CM (1977) A colorimetric method for estimating vesicular-arbuscular mycorrhizal infection in roots. Soil Biol Biochem 9:15–18CrossRefGoogle Scholar
  91. Hepper CM (1979) Germination and growth of Glomus caledonium spores: the effects of inhibitors and nutrients. Soil Biol Biochem 11:269–277CrossRefGoogle Scholar
  92. Herr DG, Peterson RL (1996) Morphology, anatomy and histochemistry of Fagus grandifolia Ehrh. (North American beech) ectomycorrhizas. Bot Acta 109: 64–71Google Scholar
  93. Hetrick BAD, Wilson GT, Kitt DG, Schwab AP (1988) Effects of soil microorganisms on mycorrhizal contribution to growth of big bluestem grass in non sterile soil. Soil Biol Biochem 20:501–507CrossRefGoogle Scholar
  94. Hiroi M (1978) Identification of 6-oxooctadecanoic acid in mushroom, Lactarius chrysorheus Fr lipid. J Agric Chem Soc Jpn 52:351–353Google Scholar
  95. Ho I (1977) Phytosterols in root systems of mycorrhizal and non-mycorrhizal Zea mays L. Lloydia 40:476–478Google Scholar
  96. Ho I, Trappe JM (1973) Translocation of 14C from Festuca plants to their endomycorrhizal fungi. Nature (Lond) 244:30CrossRefGoogle Scholar
  97. Hommel RK, Stegner S, Weber L, Kleber HP (1994) The effect of ammonium ions on glycolipid production by Candida (Torulopsis) apicola. Cell Technol (Leipzig) 42:192–197Google Scholar
  98. Hua X, Liu G, Zhang X, Yu L, Zeng P, Huang D (1995) Study on mycorrhization of pine in nursery and field by cutting off primary root apex of young seedlings. For Res 8:535–543Google Scholar
  99. Huss-Danell K (1997) Transley Review No. 93. Actinorhizal symbioses and their N2 fixation. New Phytol 136: 375–405CrossRefGoogle Scholar
  100. Hutchinson LJ (1990) Studies on the systematics of ecto-mycorrhizal fungi in axenic culture: II. the enzymatic degradation of selected carbon and nitrogen compounds. Can J Bot 68:1522–1530CrossRefGoogle Scholar
  101. Jabaji-Hare SH (1988) Lipid and fatty acid profiles of some vesicular-arbuscular mycorrhizal fungi contribution to taxonomy. Mycologia 80:622–629CrossRefGoogle Scholar
  102. Jabaji-Hare SH, Kendrick WB (1985) Effect of fosetyl-Al on root exudation and on composition of extracts of mycorrhizal and non-mycorrhizal leek roots. Can J Plant Pathol 7:18–126CrossRefGoogle Scholar
  103. Jabaji-Hare SH, Deschene A, Kendrick B (1984) Lipid content and composition of vesicles of a vesicular-arbuscular mycorrhizal fungus. Mycologia 76:1024–1030CrossRefGoogle Scholar
  104. Jabaji-Hare SH, Piché Y, Fortin JA (1986) Isolation and structural characterization of soil borne auxiliary cells of Gigaspora margarita, a vesicular-arbuscular mycorrhizal fungus. New Phytol 103:77–784CrossRefGoogle Scholar
  105. Jakobsen I (1991) Carbon metabolism in mycorrhiza. In: Varma AK (ed) Methods in microbiology, vol 23. Academic Press, London, pp 149–180Google Scholar
  106. Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83CrossRefGoogle Scholar
  107. Jeffries P, Young TWK (1994) Ecological aspects of myco-parasitism. In: Jeffries P, Young TWK (eds) Inter-fungal parasitic relationships. CAB International, Wallingford, pp 147–180Google Scholar
  108. Johansen A, Finlay RD, Olsson PA (1996) Nitrogen metabolism of external hyphae of the arbuscuclar mycorrhizal fungus Glomus intraradices. New Phytol 133:705–712CrossRefGoogle Scholar
  109. Johnson BN, McGill WB (1990) Comparison of ergosterol and chitin as quantitative estimate of mycorrhizal infection and Pinus contorta seedling response to inoculation. Can J For Res 20:1125–1131CrossRefGoogle Scholar
  110. Karaboz I, Oner M (1988) The chemical composition and use as single cell protein of Morchella conica var. costata Vent, mycelium grown in submerged culture. Doga,Turk Bioyol Dergisi 12(3):190–196Google Scholar
  111. Kling M, Jakobsen I (1997) Direct application of carbendazim and propiconazole at field rates to the external mycelium of three arbuscular mycorrhizal fungi species: effect on 32P transport and succinate dehydrogenase activity. Mycorrhiza 7:33–37CrossRefGoogle Scholar
  112. Köller W (1992) Antifungal agents with target sites in sterol functions and biosynthesis. In: Koller W (ed) Target sites of fungicides action. CRC Press, Boca Raton, Fl, pp 119–206Google Scholar
  113. Kroppenstedt RM (1985) Fatty acids and menaquinone analysis of Actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 73–199Google Scholar
  114. Kroppenstedt RM, Kutzner HJ (1978) Biochemical taxonomy of some problem Actinomycetes. In: Mordarski M, Kurylowicz W, Jeljaszewicz J (eds) Proc Int Symp on Nocardia and Streptomyces. Gustav Fischer, Stuttgart, pp 125–133Google Scholar
  115. Kucey RMN, Paul EA (1983) Vesicular arbuscular mycorrhizal spore populations in various Saskatchewan Canada soils and the effect of inoculation with Glomus mosseae on faba bean Vicia faba growth in greenhouse and field trials. Can J Soil Sci 63:87–96CrossRefGoogle Scholar
  116. Kutaf eva NP, Tsapalova IE (1989) The biochemical composition of little known edible fungi from Siberia: Lyophyllum decastes (Fr.) Sing, and Tricholoma caligatum (VIV) Rick Rastit Resur 25:278–283Google Scholar
  117. Lamont HC, Silvester WB, Torrey JG (1988) Nile red fluorescence demonstrates lipid in the envelope of vesicles from N2-fixing cultures of Frankia. Can J Microbiol 34:656–666CrossRefGoogle Scholar
  118. Larsen J, Olsson PA, Jakobsen I (1998) The use of fatty acid signatures to study mycelial interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the saprotrophic fungus Fusarium culmorum in root-free soil. Mycol Res 102(12): 1491–1496CrossRefGoogle Scholar
  119. Lechevalier MP (1977) Lipids in bacterial taxonomy — a taxonomist’s view. Crit Rev Microbiol 5:109–210CrossRefGoogle Scholar
  120. Lechevalier MP, Horrière R, Lechevalier HA (1982) The biology of Frankia and related organisms. Dev Ind Microbiol 23:51–60Google Scholar
  121. Lechevalier MP, Baker D, Horrière F (1983) Physiology, chemistry, serology, and infectivity of two Frankia isolates from Alnus incana subsp. rugosa. Can J Bot 61:2826–2833CrossRefGoogle Scholar
  122. Lehrian DW, Shisler LC, Patton S (1976) The effects of linoleate and acetate on the growth and lipid composition of mycelium of Agaricus bisporus. Mycologia 68:453–462CrossRefGoogle Scholar
  123. Leu SW, Chang DCN (1989) Physiological studies on Asparagus mycorrhizae III. Histochemical studies on asparagus mycorrhizae. Mem Coll Agric Natl Taiwan Univ 29:118–123Google Scholar
  124. Lindeberg G, Lindeberg M (1974) Effect of short chain fatty acids on the growth of some mycorrhizal and saprophytic hymenomycetes. Arch Microbiol 101:109–114CrossRefPubMedGoogle Scholar
  125. Liu CY, Zhou X (1987) Studies on the endomycorrhiza of Galeola faberi Rolfe. J Wuhan Bot Res 5:101–110Google Scholar
  126. Lopez MF, Whaling CS, Torrey JG (1983) The polar lipids and free sugars of Frankia in culture. Can J Bot 61:2834–2842CrossRefGoogle Scholar
  127. Lösel DM (1980) The effect of biotrophic fungal infection on the lipid metabolism of green plants. In: Mazliak P, Benveniste P, Costes C, Douce R (eds) Biogenesis and function of plant lipids. Elsevier/North Holland, Amsterdam, pp 263–268Google Scholar
  128. Lösel DM (1988) Fungal lipids. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London, pp 699–806Google Scholar
  129. Lösel DM (1989) Functions of lipids: Specialized roles in fungi and algae. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 2. Academic Press, London, pp 367–437Google Scholar
  130. Lösel DM, Cooper KM (1979) Incorporation of Relabelled substrates by uninfected and VA mycorrhizal roots of onion. New Phytol 83:415–426CrossRefGoogle Scholar
  131. Lösel DM, Sancholle M (1996) Fungal lipids. In: Prasad R, Ghannoum MA (eds) Lipids of pathogenic fungi. CRC Press, Boca Raton, FL, pp 27–62Google Scholar
  132. Lu X, Koïde RT (1991) Avena fortma L. seedling nutrient dynamics as influenced by mycorrhizal infection of natural generation. Plant Cell Environ 14:931–939Google Scholar
  133. Lynd JQ, Ansman TR (1989) Effects of phosphorus, calcium with four potassium levels on nodule histology, nitrogenase activity and improve Spanco peanut yields. J Plant Nutr 12:65–84CrossRefGoogle Scholar
  134. Marschner H (1996) Mineral nutrient acquisition in non-mycorrhizal and mycorrhizal plants. Phyton 36:61–68Google Scholar
  135. Martin F, Canet D, Marchai JP (1984a) In vivo natural abundance of carbon 13 NMR studies of the carbohydrate storage in ectomycorrhizal fungi. Physiol Veg 22:733–744Google Scholar
  136. Martin F, Canet D, Marchai JP, Brondeau J (1984b) In vivo natural abundance 13C nuclear magnetic resonance studies of living ectomycorrhizal fungi. Plant Physiol 75:151–153CrossRefPubMedGoogle Scholar
  137. Martin F, Delaruelle C, Hubert JL (1990) An improved ergosterol assay to estimate fungal biomass in ecto-mycorrhizas. Mycol Res 94:1059–1064CrossRefGoogle Scholar
  138. Marx DH, Cordell CE, France RC (1986) Effects of tri-adimefon on growth and ectomycorrhizal development of loblolly slash pines in nursery. Phytopathology 76:824–831CrossRefGoogle Scholar
  139. Massicotte HB, Ackerley CA, Peterson RL (1989) Ontogeny of Alnus rubra, Alpova diplophloeus ecto-mycorrhizae: II Transmission electron microscopy. Can J Bot 67:201–210CrossRefGoogle Scholar
  140. Matcham SE, Jordan BR, Wood DA (1985) Estimation of fungal biomass in a solid substrate by three independent methods. Appl Microbiol Biotechnol 21: 108–112CrossRefGoogle Scholar
  141. Maudinas B, Chemardin M, Gadal P (1982) Fatty acid composition of root nodules of Alnus species. Phytochemistry 21:1271–1273CrossRefGoogle Scholar
  142. Meier R, Charvat I (1992) Germination of Glomus mosseae spores: procedure and ultrastructural analysis. Int J Plant Sci 15:541–549CrossRefGoogle Scholar
  143. Melhuish JH, Janerette CA (1979) The effects of the carbon-nitrogen ratios on carbohydrate, protein, lipid and fatty acid production in Pisolithus tinc-torius. Proc 4th North American Conf on Mycorrhizae, 67 pp Fort Collins, Colorado USA (24–28 June 1979)Google Scholar
  144. Melhuish JH Jr, Bean GA, Hacskaylo E (1972) Fatty acids and sterols of some mycorrhizal fungi. Phytopathology 62:77–778CrossRefGoogle Scholar
  145. Melin E (1962) Physiological aspects of mycorrhizae of forest trees. In: Kozlowski TT (ed) Tree growth. Ronald Press, New York, pp 247–263Google Scholar
  146. Moore AEP, Ashford AE, Peterson RL (1991) Reserve substances in Paxillus involutus sclerotia: determination by histochemistry and X-ray microanalysis. Protoplasma 163:67–81CrossRefGoogle Scholar
  147. Morelli I, Pistelli L, Catalano S (1981) Constituents of Clitocybe nebularis and of Hydnum repandum. Fitoterapia 52(l):45–47Google Scholar
  148. Mosse B, Bowen GD (1968) A key to the recognition of some Endogone spore types. Trans Br Mycol Soc 51:469–483CrossRefGoogle Scholar
  149. Nagahashi G, Douds DD Jr, Abney GD (1996) Phosphorus amendment inhibits hyphal branching of the VAM fungus Gigaspora margarita directly and indirectly through its effect on root exudation. Mycorrhiza 6:403–408CrossRefGoogle Scholar
  150. Nagy S, Nordby HE, Nemec S (1980) Composition of lipids in roots of six Citrus cultivars infected with the vesicular-arbuscular mycorrhizal fungus, Glomus mosseae. New Phytol 85:377–384CrossRefGoogle Scholar
  151. Nandan R, Raisuddin S (1992) Fungal degradation of industrial wastes and wastewater. In: Arora DK, Elander RP, Mukerji KJ (eds) Handbook of applied mycology, vol 4, Fungal biotechnology. Marcel Dekker, New York, pp 931–961Google Scholar
  152. Nemec S (1981) Histochemical characteristics of Glomus etunicatum infection of Citrus limon fibrous roots. Can J Bot 59:609–617CrossRefGoogle Scholar
  153. Nemec S (1985) Influence of selected pesticides on Glomus species and their infection in Citrus. Plant Soil 84:133–137CrossRefGoogle Scholar
  154. Newcomb W, Wood SM (1987) Morphogenesis and fine structure of Frankia (Actinomycetales): the microsymbiont of nitrogen-fixing actinorhizal root nodules. Int Rev Cytol 109:1–88CrossRefPubMedGoogle Scholar
  155. Newcomb W, Peterson RL, Callaham D, Torrey JG (1978) Structure and host actinomycete interactions in developing root nodules of Comptonia peregrina. Can J Bot 56:502–531CrossRefGoogle Scholar
  156. Newell SY, Arsuffi TL, Fallon RD (1988) Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography. Appl Environ Microbiol 54:1876–1879PubMedGoogle Scholar
  157. Nordby HE, Nemec S, Nagy S (1981) Fatty acids and sterols asociated with Citrus root mycorrhizae. J Agric Food Chem 29:396–401CrossRefGoogle Scholar
  158. Nylund JE, Wallender H (1992) Ergosterol analysis as a mean of quantifying mycorrhizal biomas. In: Norris JR, Redd D, Varmd AK (eds) Methods in microbiology, vol 24, pp 77–88Google Scholar
  159. Ogundero VW (1981) Degradation of nigerian palm product by thermophilic fungi. Trans Br Mycol Soc 77:267–271CrossRefGoogle Scholar
  160. Ohta A (1988) Effects of butyric acid and related compounds on basidiospore germination of some mycorrhizal fungi. Trans Mycol Soc Jpn 29:375–382Google Scholar
  161. Olsson PA, Baath E, Jacobsen I, Söderstrom B (1995) The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol Res 99:623–639CrossRefGoogle Scholar
  162. Olsson PA, Bääth E, Jakobsen I (1997) Phophorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures. Appl Environ Microbiol 63:3531–3538PubMedGoogle Scholar
  163. Olsson PA, Francis R, Read DJ, Söderstrom B (1998) Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interaction with other soil microorganisms as estimated by measurement of specific fatty acids. Plant Soil 201:9–16CrossRefGoogle Scholar
  164. Ourisson G, Rohmer M (1982) Prokaryotic polyterpenes: phylogenetic precursors of sterols. In: Bronner F, Kleinzeller A (eds) Current topics in membranes and transport, vol 17. Academic Press, London, pp 153–182Google Scholar
  165. Pacovsky RS (1989) Metabolic difference in Zea-Glomus-Azospirillum symbioses. Soil Biol Biochem 21:953–960CrossRefGoogle Scholar
  166. Pacovsky RS, Fuller G (1987) Lipids of soybean inoculated with microsymbionts. In: Stumpf PK, Mudd JB, Nes WD (eds) The metabolism structure and function of plant lipids. Plenum Press, New York, pp 349–351CrossRefGoogle Scholar
  167. Pacovsky RS, Fuller G (1988) Mineral and lipid composition of Glycine, Glomus, Bradyrhizobium symbioses. Physiol Plant 72:733–746CrossRefGoogle Scholar
  168. Pang PC, Paul EA (1980) Effects of vesicular-arbuscular mycorrhiza on C and N distribution in nodulated faba beans. Can J Soil Sci 60:241–250CrossRefGoogle Scholar
  169. Paul EA, Kucey RMN (1981) Carbon flow in microbial associations. Science 213:473–474CrossRefPubMedGoogle Scholar
  170. Pedersen TA (1970) Effects of fatty acids and methyl octanoate on resting mycelium of Boletus variegatus. Physiol Plant 23:654–666CrossRefGoogle Scholar
  171. Peng S, Eissenstat DM, Graham JH, Williams K, Hodge NC (1993) Growth depression in mycorrhizal Citrus at high phosphorus supply. Analysis of carbon costs. Plant Physiol 101:1063–1071Google Scholar
  172. Pfeffer PE, Douds DD, Becart G, Brouillette J, Bago B, Shach AR, Hill Y (1998) The uptake, metabolism and transport of different carbon substrates in VA mycorrhizal carrot roots. 2nd Int Conf on Mycorrhiza Uppsala, Sweden, 136 pp (5–10 July 1998)Google Scholar
  173. Plassard C, Coll A, Mousain D (1983) Dosage de la chitine fongique: application à l’estimation de la masse mycélienne présente dans les racines mycorhizées du pin maritime cultivé in vitro ou en pépinière. C R Acad Sci III 297:233–236Google Scholar
  174. Prostenik M, Burcar I, Castek A, Cosovic C, Golem J, Jandric Z, Kljaic K, Ondrusek V (1978) Lipids of higher fungi. III The fatty acids and 2-hydroxy-fatty acids in some species of basidiomycetes. Chem Phys Lipids 22:97–103CrossRefGoogle Scholar
  175. Ouispel A, Burggraaf H, Borsj H, Tak T (1983) The role of lipids in the growth of Frankia isolates. Can J Bot 61:2801–2806CrossRefGoogle Scholar
  176. Raper KB (1965) The genus Aspergillus. Williams and Wilkins, BaltimoreGoogle Scholar
  177. Ratnayake M, Leonard RT, Menge JA (1978) Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhizal formation. New Phytol 81:543–552CrossRefGoogle Scholar
  178. Rolin D, Le Tacon F, Larher F (1984) Characterization of the different forms of phosphorus in the mycelium of the ectomycorrhizal fungus Hebeloma cylindrosporum cultivated in pure culture. New Phytol 98:335–344CrossRefGoogle Scholar
  179. Ruzic R, Gogala N, Jerman I (1997) Sinusoidal magnetic fields: Effects on the growth and ergosterol content in mycorrhizal fungi. Electro Magnetobiol 16(2): 129–142Google Scholar
  180. Salmanowicz B, Nylund JE (1988) High performance liquid chromatography determination of ergosterol as a measure of ectomycorrhizal infection in Scots pine. Eur J For Pathol 18:291–298CrossRefGoogle Scholar
  181. Salmanowicz B, Nylund JE, Wallander H (1990) High performance liquid chromatography assay of ergosterol: a technique to estimate fungal biomass in roots with ectomycorrhiza. Agric Ecosyst Environ 28:437–440CrossRefGoogle Scholar
  182. Samra A, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S (1996) Soluble proteins and polypeptide profiles of spores of arbuscular mycorrhizal fungi. Interspecific variability and effects of host (myc+) and non-host (myc-) Pisum sativum root exudates. Agronomie (Paris) 16:709–719CrossRefGoogle Scholar
  183. Sancholle M, Dalpé Y (1993) Taxonomic relevance of fatty acids of arbuscular mycorrhizal fungi and related species. Mycotaxon 49:187–193Google Scholar
  184. Sancholle M, Lösel DM (1995) Lipids in fungal biotechnology. In: Kück (ed) The Mycota II Genetics and biotechnology. Springer, Berlin Heidelberg New York, pp 339–367CrossRefGoogle Scholar
  185. Sancholle M, Weete JD, Touzé-Soulet JM (1984a) Composition of a plasma membrane enriched fraction from Taphrina deformans. Effects of propiconazole. In: Siegenthaler PA, Eichenberger W (eds) Structure, function and metabolism of plant lipids. Elsevier, Amsterdam, pp 347–352Google Scholar
  186. Sancholle M, Weete JD, Montant C (1984b) Effects of tri-azoles on fungi. I. Growth and celllular permeability. Pest Biochem Physiol 21:31–44CrossRefGoogle Scholar
  187. Sancholle M, Dargent R, Weete JD, Rushing AE, Miller KS, Montant C (1988) Effects of triazoles on fungi. IV. Ultrastructure of Taphrina deformans. Mycologia 80:162–175CrossRefGoogle Scholar
  188. Scannerini S, Bonfante-Fasolo PB (1975) Preliminary data on the ultrastructure of intracelllular vesicles in endomycorrhiza of Ornithogalum umbellatum L. Atti Accad Sci Torino 109:619–621Google Scholar
  189. Schisler LC, Volkoff O (1977) The effects of safflower oil on mycelial growth of Boletacea in submerged liquid cultures. Mycologia 69:118–125CrossRefGoogle Scholar
  190. Schmitz O, Danneberg G, Hundeshagen B, Klingner A, Bothe H (1991) Quantification of vesicular-arbuscular mycorrhiza by biochemical parameters. J Plant Physiol 139:106–114CrossRefGoogle Scholar
  191. Schreiner RP, Bethlenfalvay GJ (1997) Mycorrhizae, bio-cides, and biocontrol 3. Effects of three different fungicides on developmental stages of three AM fungi. Biol Fertil Soils 24:18–26CrossRefGoogle Scholar
  192. Schubert A, Wys P, Wiemken A (1992) Occurrence of trehalose in vesicular-arbuscular mycorrhizal fungi and in in mycorrhizal roots. J Plant Physiol 140: 41–45CrossRefGoogle Scholar
  193. Scitz LM, Mohr HE, Burroughs R, Sauer DB (1977) Ergosterol as an indicator of fungal invasion in grains. Cereal Chem 54:1207–1217Google Scholar
  194. Scitz LM, Sauer DB, Burroughs R, Mohr HE, Hubbard JD (1979) Ergosterol as a measure of fungal growth. Phytopathology 69:1202–1203CrossRefGoogle Scholar
  195. Selvaraj T, Subramanian G (1990) Phenols and lipids in mycorrhizal and non-mycorrhizal roots of Sesamum indicum. Curr Sci 59:471–473Google Scholar
  196. Senatore F (1988) Chemical constituents of some species of Agaricaceae. Biochem Syst Ecol 16:601–604CrossRefGoogle Scholar
  197. Senatore F, Dini A, Marino A, Schettino O (1988) Chemical constituents of some Basidiomycetes. J Sci Food Agric 45(4):337–345CrossRefGoogle Scholar
  198. Siegel RR (1981) Sterol-inhibiting fungicides: effects on sterol biosynthesis and sites of action. Plant Dis 65:986–989CrossRefGoogle Scholar
  199. Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Phys Plant Mol Biol 39:221–244CrossRefGoogle Scholar
  200. Snellgrove RC, Splittstoesser WE, Stribley DP, Tinker PB (1982) The distibution of carbon and the demand of the fungal symbiont in leek plants with vesicular-arbucular mycorrhizae. New Phytol 92:75–87CrossRefGoogle Scholar
  201. Söderstrom B (1977) Vital staining of fungi in pure culture and in soil with fluorescein diacetate. Soil Biol Biochem 9:59–63CrossRefGoogle Scholar
  202. Solberg Y (1989) A literature review of the lipid constituents of higher fungi new investigations of Agari-cales species. Int J Mycol Lichenol 4:137–154Google Scholar
  203. Strullu DG, Charnel A, Eloy JF, Gourret JP (1983) Ultra-structure and analysis, by laser probe mass spectrography, of the mineral composition of the vesicles of Trifolium pratense endomycorrhizas. New Phytol 94:81–88CrossRefGoogle Scholar
  204. Sugai A, Itoh T, Kanako H, Kinjoj N, Muramatsu T (1986) Pyrophosphatidic acid in mushrooms. Lipids 21:666–668CrossRefGoogle Scholar
  205. Sumner JL (1973) The fatty acid composition of Basid-iomycetes. N Z J Bot 11:435–442CrossRefGoogle Scholar
  206. Sung SJS, White LM, Marx DH, Otrosina WJ (1995) Seasonal ectomycorrhizal fungal biomass development on loblolly pine (Pinus taeda L.) seedling. Mycorrhiza 5:439–447Google Scholar
  207. Sward RJ (1981a) The structure of the spores of Gigaspora margarita. I. The dormant spore. New Phytol 87:761–768CrossRefGoogle Scholar
  208. Sward RJ (1981b) The structure of the spores of Gigaspora margarita. III. Germ-tube emergence and growth. New Phytol 88:667–673CrossRefGoogle Scholar
  209. Sylvia DM, Wilson DO, Graham JH, Maddo JJ, Miliner P, Morton JB, Skipper HD, Wright SF, Jarstfer AG (1993) Evaluation of vesicular-arbuscular mycorrhizal fungi in diverse plants and soils. Soil Biol Biochem 25:705–713CrossRefGoogle Scholar
  210. Taber WA, Taber RA (1982) Nutrition and respiration of basidiospores and mycelium of Pisolithus tinctorius. Phytopathology 72:316–322Google Scholar
  211. Tanaka Y, Kawahara S, Eng AH, Takei A, Ohya N (1994) Structure of cis-polyisoprene from Lactarius mushrooms. Acta Biochim Pol 41:303–309PubMedGoogle Scholar
  212. Tawaraya K, Watanabe S, Yoshida E, Wagatsuma T (1996) Effect of onion {Allium cepa) root exudates on the hyphal growth of Gigaspora margarita. Mycorrhiza 6:57–59CrossRefGoogle Scholar
  213. Thompson LK, Hale MG (1983) Effects of kinetin in the rooting medium on root exudation of free fatty acids and sterols from roots of Arachis hypogea L. “Argentine” under axenic conditions. Soil Biol Biochem 15:125–126CrossRefGoogle Scholar
  214. Torrey JG, Callaham D (1982) Structural features of the vesicle of Frankia sp. CpII in culture. Can J Microbiol 28:749–757CrossRefGoogle Scholar
  215. Trappe JM (1972) Fungus associates of ectotrophic mycorrhizae. Bot Rev 28:508–606Google Scholar
  216. Trent JD, Svejcar TJ, Christiansen S (1989) Effects of fumigation on growth, photosynthesis water relations and mycorrhizal development of winter wheat in the field. Can J Plant Sci 69:535–540CrossRefGoogle Scholar
  217. Tunlid A, Schultz NA, Benson DR, Steele DB, White DC (1989) Differences in fatty acid composition between vegetative cells and N2-fixing vesicles of Frankia sp. strain Cp11. Proc Natl Acad Sci USA 86:3399–3403CrossRefPubMedGoogle Scholar
  218. Turner WD, Aldrige B (1983) Fungal metabolites. Academic Press, LondonGoogle Scholar
  219. Vaskovsky VE, Khotimchenko SV, Benson AA (1991) Identification of diacylglycero-4-o-n n n-trimethylho-moserine in mushrooms. Lipids 326:254–256CrossRefGoogle Scholar
  220. Vignon C, Plassard C, Mousain D, Salsac L (1986) Assay of fungal chitin and estimation of mycorrhizal infection. Physiol Vég 24:201–207Google Scholar
  221. von Alten H, Lindermann A, Schonnbeck F (1993) Stimulation of vesicular-arbuscular mycorrhiza by fungicides or rhizosphere bacteria. Mycorrhiza 2:167–173CrossRefGoogle Scholar
  222. Vrkoc J, Budesinsky M, Dolejs L (1976) Constituents of the basidiomycete Scleroderma aurantium. Phytochemistry 15:1782–1784CrossRefGoogle Scholar
  223. Wallander H, Massicotte HB, Nylund JE (1997) Seasonal variation in protein, ergosterol and chitn in five morphotypes of Pinus sylvestris L. ectomycorrhizae in a mature Swedish forest. Soil Biol Biochem 29:45–53CrossRefGoogle Scholar
  224. Wallenda T, Schaeffer C, Einig W, Wingler A, Hampp U, Scith B, George E, Marschner H (1996) Effects of varied soil nitrogen supply on Norway spruce (Picea abies [L.] Karst.) Plant Soil 186:361–369CrossRefGoogle Scholar
  225. Wang GM, Coleman DC, Freckman DW, Dyer MI, McNaughton SJ, Acra MA, Goeschl JD (1989) Carbon partioning patterns of mycorrhizal versus non-mycorrhizal plants: real-time dynamic measurements using CO2. New Phytol 112:489–493CrossRefGoogle Scholar
  226. Wardle KS, Schisler LC (1969) The effects of various lipids on growth of mycelium of Agaricus bisporus. Mycologia 61:305–314CrossRefPubMedGoogle Scholar
  227. Wathelet JP, Severin M, Impens R (1972) Etude des lipides de Morchella rotunda Pers. Analyse des acids gras. Bull Rech Agron Gembloux 7:350–357Google Scholar
  228. Weete JD (1980) Lipid biochemistry of fungi and other organisms. Plenum Press, New YorkCrossRefGoogle Scholar
  229. Weete JD (1989) Structure and function of sterols in fungi. Adv Lipid Res 23:115–167Google Scholar
  230. Weete JD, Gandhi SR (1986) Biochemistry and molecular biology of fungal sterols. In: Bramble R, Marzluf GA (eds) The Mycota III. Springer, Berlin Heidelberg New York, pp 421–438Google Scholar
  231. Weete JD, Gandhi SR (1997) Sterols of the phylum Zygomycota: phylogenetic implications. Lipids 32: 1309–1316CrossRefPubMedGoogle Scholar
  232. Weete JD, Kulifaj M, Montant C, Nes WR, Sancholle M (1985a) Distribution of sterols in fungi II Brassicasterol in Tuber and Terfezia species. Can J Microbiol 31:1127–1130CrossRefGoogle Scholar
  233. Weete JD, Sancholle M, Touzé-Soulet JM, Bradley J, Dargent R (1985b) Effects of triazoles on fungi. III. Composition of a plasma membrane-enriched fraction of Taphrina deformans. Biochim Biophys Acta 812:633–642CrossRefGoogle Scholar
  234. Weete JD, Sancholle M, Patterson KA, Miller KS, Huang MQ, Campbell F, Van den Reek M (1991) Fatty acid metabolism in Taphrina deformans treated with sterol biosynthesis inhibitors. Lipids 26:669–674CrossRefGoogle Scholar
  235. Whipps JM, Haselwandter K, McGee EEM, Lewis DH (1982) Use of biochemical markers to determine growth, development and biomass of fungi in infected tissues, with particular reference to antagonistic and mutualistic biotrophs. Trans Br Mycol Soc 79:385–400CrossRefGoogle Scholar
  236. Yokokawa H (1994) Sterol compositions of the fruit-bodies of higher fungi. 5th Int Mycological Congr Abstr, Vancouver BC, Canada, 250 pp (14–21 July 1994)Google Scholar
  237. Yokokawa H, Mitsuhashi T (1981) The sterol composition of mushrooms. Phytochemistry 206:1349–1351CrossRefGoogle Scholar
  238. Zel J, Svetek J, Crne H, Schara M (1993) Effects of aluminium on membrane fluidity of the mycorrhizal fungus Amanita muscaria. Physiol Plant 89:172–176CrossRefGoogle Scholar
  239. Zhuk YT, Tsapalova IE, Stepanova EN (1981) Lipids of some edible fungi growing in Siberia. Rastit Resur 17:109–114 (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • M. Sancholle
    • 1
  • Y. Dalpé
    • 2
  • A. Grandmougin-Ferjani
    • 1
  1. 1.Laboratoire Mycologie/Phytopathologie/Environnement (L.M.P.E.)Université du Littoral Côte d’OpaleCalais CedexFrance
  2. 2.Eastern Cereal and Oilseed Research Centre (ECORC), Wm. Saunders BuildingCentral Experimental FarmOttawaCanada

Personalised recommendations