Advertisement

Ion-Beam Radiochemistry

Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 63)

Abstract

The principle time scale of the different effects upon ion impact on a solid is sketched in Fig. 7.1. The specific radiochemistry with which we deal preferentially in this chapter starts at ~ 10−16 s after the ion’s transversal through the polymer. Any deposition of energy by an impinging ion onto a target occurs discretely because electronic excitation is restricted by quantized energy levels, and ionization is restricted by a certain potential height that has to be overcome for the electrons to be released from the orbit. This discrete energy-loss entity is called a “spur” [1], i.e., a projectile displaces target atoms in certain statistically distributed steps, the so-called “spurs”. Thus, changing the linear energy transfer (LET) of the impinging ion means changing the spur separation or spur density. For low-LET ion beams, spurs are widely separated and occur independently in the polymer, often leading to scission. With increasing LET — which signifies higher energy or heavier particles, i.e., when more radical pairs are created within the track radius, the spurs are connected or overlap. A high radical concentration gradient is established and so the effective radius increases, facilitating, e.g., cross-linking.

Keywords

Linear Energy Transfer Pure PMMA Electronic Energy Transfer Irradiate Polymer Deposit Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee EH, Ion beam modification of polymeric materials fundamental principles and applications. Nucl Instrum Methods B151, 29–41 (1999)Google Scholar
  2. 2.
    Klett R, Charakterisierung von hochenergetischen Schwerionenspuren in Polyimid. PhD. Thesis. Humboldt University, Berlin 1997, and references therein (in German)Google Scholar
  3. 3.
    Gray LH. J Chim Phys 52, 519 (1955)Google Scholar
  4. 4.
    Fink D, Ibel K, Goppelt P, Biersack JP, Wang L, Behar M, Ion beam induced carbon clusters in polymers. Nucl Instrum Methods B46, 342–346 (1990)Google Scholar
  5. 5.
    Rössler K, Chemical modification of insulators by ion implantation, fundamental mechanisms and astrophysical implications. Radiat Eff 99, 21–70 (1986)Google Scholar
  6. 6.
    Castner ES, Galiatsatos V, Computer simulation of polymer network formation by radiation cross-linking. In: Irradiation of polymers: Fundamentals and technological applications, R.L. Clough and S.W. Shalaby (eds.), Am Chem Soc Symp Ser. 620, Washington, USA (1996)Google Scholar
  7. 7.
    Hill DJT, Milne KA, O’Donell JH, Pomery PJ, A recent advance in the determination of scission and cross-linking yields of gamma-ray irradiated polymers. In: Irradiation of polymers: Fundamentals and technological applications, R.L. Clough and S.W. Shalaby (eds.), Am Chem Soc Symp Ser 620, Washington, USA (1996)Google Scholar
  8. 8.
    Weiss DE, Klaweit HW, Kensek RP, Low-voltage electron-beam simulation using the Integrated Tiger Series Monte Carlo code and calibration through radiochemic dosimetry. In: Irradiation of polymers: Fundamentals and technological applications, R.L. Clough and S.W. Shalaby (eds.), Am Chem Soc Symp Ser 620, Washington, USA (1996)Google Scholar
  9. 9.
    Fink D, Klett R, Latent ion tracks in polymers for future use in nanoelectronics: an overview about the present state-of-the-art. Braz J Phys 25, 54–75 (1995)Google Scholar
  10. 10.
    Friese K, Placek V, Mehnert R, Angert N, Spohr R, Trautmann Ch, Radiation-induced grafting of styrene onto PI ion track membranes. Nucl Instrum Methods B105, 139–144 (1995)Google Scholar
  11. 11.
    Chipara MI, ESR investigations on ion beam irradiated polymers. Nucl In-strum Methods B131, 85–90 (1997)Google Scholar
  12. 12.
    Salvetat JP, Costantini JM, Brisard F, Spin and charge dynamics in heavy ion irradiated polyimide kapton. Nucl Instrum Methods B116, 284–288 (1995)Google Scholar
  13. 13.
    Odzhaev VB, Azarko II, Karpovich IA, Kozlov IR, Popok VN, Sviridov DV, Hnatowicz V, Jankowskij ON, Rybka V, Svorcik V, The properties of polyethylene and polyaniline implanted with B+ ions to high dose, Nucl In-strum Methods B23, 163–166 (1995)Google Scholar
  14. 14.
    Marletta G, Pignataro S, Oliveri C, Correlation between the modification of the chemical structure and the electric properties of Ar-bombarded polyimide. Nucl Instrum Methods B39, 792–795 (1990)Google Scholar
  15. 15.
    Mélot M, Nghono-Ravache Y, Balanzat E, Role of the irradiation temperature on the modifications of swift-heavy-ion irradiated polyethylene. Presented at the 5th Intl. Symposium on Swift Heavy Ions in Matter, May 22–25, 2002, Giardini Naxos, ItalyGoogle Scholar
  16. 16.
    Marletta G, Chemical reactions and physical property modifications induced by keV ion beams in polymers. Nucl Instrum Methods B46, 295–305 (1990)Google Scholar
  17. 17.
    Calcagno L, Compagni G, Foti G, Structural modification of polymer films by ion irradiation. Nucl Instrum Methods B65, 413–422 (1992)Google Scholar
  18. 18.
    Balanzat E, Bouffard S, Bouquerel A, Fuess H, Trautmann C, Swift heavy ion irradiation of polystyrene. Nucl Instrum Methods B116, 159–163 (1997)Google Scholar
  19. 19.
    Steckenreiter T, Balanzat E, Fuess H, Trautmann C, Chemical modifications of PET induced by swift heavy ions. Nucl Instrum Methods B131, 159–166 (1997)Google Scholar
  20. 20.
    Benton EV, Henke RP, Sensitivity enhancement of Lexan nuclear track detector. Nucl Instrum Methods 70, 183–184 (1969)Google Scholar
  21. 21.
    Benton EV, Henke RP, Sensitivity enhancement of Lexan nuclear track detector. Nucl Instrum Methods 70, 183–184 (1969)Google Scholar
  22. 22.
    Lee EH, Ion beam modification of polyimides. In: Polyimides: Fundamentals and Applications. MK Ghosh and KL Mittal (eds.), Marcel Dekker, 1996, pp. 471–503Google Scholar
  23. 23.
    Clough RL, Gillen KT, Dole M, Radiation resistance of polymers and composites. In: Irradiation Effects of Polymers, D.W. Clegg and A.A. Collyer (eds.), Elsevier Appl Sci 1991, p. 79–156Google Scholar
  24. 24.
    Chapiro A. In: Polymers: Chemistry and Physics of Modern Materials. Intl. Textbook Company, Billing amp Sons, 1973, p. 24–70Google Scholar
  25. 25.
    Dole M, Polymers that primarily degrade on irradiation. In: The Radiation Chemistry of Macromolecules, Vol. II, M Dole (ed.), Academic Press, 1973, pp. 97–117Google Scholar
  26. 26.
    Mittal VK, Lotha S, Avasthi DK, Hydrogen loss under heavy ion irradiation in polymers. Radiat Eff Defects Solids 147, 199–210 (1999)Google Scholar
  27. 27.
    Carswell-Pomerantz T, Dong L, Hill DJT, O’Donell JH, Pomery PJ, Mechanistic studies on the radiation chemistry of poly(hydroxybutyrate). In: Irradiation of Polymers: Fundamentals and Technological Applications, RL Clough and SW Shalaby (eds.), Am Chem Soc Symp Ser 620, Washington, USA (1994)Google Scholar
  28. 28.
    Tretyakova SP, Apel PYu, Jolos LV, Mamonova TI, Shirkova VV, Study of registration properties of polyethyleneterephthalate. In: H. Francois et al. (eds.), Solid State Nuclear Track Detectors. Pergamon Press, Oxford, pp. 283–287 (1980)Google Scholar
  29. 29.
    Chambaudet A, Roncin J, I.R., U.V. and ESR studies on plastic track detectors irradiated by heavy ions. In: Fowler PH, Clapham VM (eds.), Solid State Nuclear Track Detectors. Pergamon Press, Oxford, 1982, pp. 15–21Google Scholar
  30. 30.
    Balanzat E, Betz N, Bouffard S, Swift heavy ion modification of polymers. Nucl Instrum Methods B105, 46–54 (1995)Google Scholar
  31. 31.
    Lai JH, Polymers for Electronic Applications, CRC Press, Boca Raton, Florida (1989)Google Scholar
  32. 32.
    Torrisi L, Plastic scintillator investigations for relative dosimetry in proton-therapy. Nucl Instrum Methods B170, 523–530 (2000)Google Scholar
  33. 33.
    Gamaly EG, Chadderton LT, Proc Roy Soc London A449, 381–400 (1995)Google Scholar
  34. 34.
    Fink D, Vacík J, Grünwald R, Klett R, Chadderton LT, Hnatowicz V, Modification of polyimide by energetic Ci,o ions. Fullerene Sci Technol 5, 267 (1997)Google Scholar
  35. 35.
    Schmoldt A, Chadderton LT, Fink D, Irradiation of PMMA with high energy light ions: the depth distribution for volatile reaction-product emission. Radiat Eff Defects Solids 128, 277–285 (1994)Google Scholar
  36. 36.
    Fink D, Hosoi F, Omichi H, Cardoso J, Vazquez H, Montiel R, Chadderton LT, Wang L, Depth dependence of IR absorption of MeV and GeV irradiated PMMA and PETP foils. In: Advanced Materials ’83, IV/Laser and ion beam modification of materials, I. Yamada et al. (eds.), Trans Mater Res Soc Jpn 17, 515–518 (1994)Google Scholar
  37. 37.
    Fink D, Chadderton LT, Hosoi F, Omichi H, Sasuga T, Schmoldt A, Wang L, Klett R, Hillenbrand J, Chemical modification of PMMA by MeV and GeV, light and heavy, ion irradiations. Nucl Instrum Methods B91, 146–150 (1994)Google Scholar
  38. 38.
    Balanzat E, Bouffard S, LeMoel A, Betz N, Physico-chemical modifications induced on polymers by swift heavy ions. Nucl Instrum Methods B91 140145 (1994), and references thereinGoogle Scholar
  39. 39.
    Chadderton LT, Fink D, Möckel HJ, Dwivedi KK, Hammoudi A, Fullerene formation in the tracks of energetic ions. Radiat Eff Defects Solids 127, 163168 (1993)Google Scholar
  40. 40.
    Chadderton, Fink D, Gamaly Y, Möckel H, Wang L, Omichi H, Hosoi F, Synthesis of buckminsterfullerene in the wake of energetic ions. Nucl Instrum Methods B91, 71–77 (1994)Google Scholar
  41. 41.
    Fink D, Möckel HJ, Melzer H, Klett R, Hosoi F, Omichi H, Chadderton LT, Wang L, GeV latent ion tracks in sugar; fullerenes and other radiochemical products. Nucl Instrum Methods B117, 134–139 (1996)Google Scholar
  42. 42.
    Steckenreiter TH, Charakterisierung von Spuren energiereicher Ionen in Polymeren (in German). PhD. Thesis TH Darmstadt (1997)Google Scholar
  43. 43.
    Ferain E, Legras R, Heavy ion tracks in polycarbonate. Comparison with a heavy ion-irradiated model compound (diphenyl carbonate). Nucl Instrum Methods B82, 539–548 (1993)Google Scholar
  44. 44.
    Dehaye F, Balanzat E, Ferain E, Legras E, Chemical modifications induced in bisphenol A polycarbonate by swift heavy ions. Presented at the 5th Intl. Symposium on Swift Heavy Ions in Matter, May 22–25, 2002, Giardini Naxos, ItalyGoogle Scholar
  45. 45.
    Herden V, Das Verhalten von lichtinduzierten Ladungsträgern in Polysilanen unter besonderer Berücksichtigung von Dotiereungen and strahlenchemischer Vernetzung. PhD. Thesis, Technical University Berlin, No. D83 (2001) (in German)Google Scholar
  46. 46.
    Davenas J, Boiteaux G, Xu XL, Aden E, Role of the modifications induced by ion beam irradiation in the optical and conducting properties of poylimide. Nucl Instrum Methods B32, 136–141 (1988)Google Scholar
  47. 47.
    Fink D, Müller M, Chadderton LT, Cannington PH, Elliman RG, McDonald DC, Optically absorbing layers on ion beam modified polymers: a study of their evolution and properties. Nucl Instrum Methods B32, 125–130 (1988)Google Scholar
  48. 48.
    Fink D, Chadderton LT, Hosoi F, Omichi H, Schmoldt A, Depth distributions of infrared absorption of ion-irradiated PETP. Radiat Eff Defects Solids 133, 121–131 (1995)Google Scholar
  49. 49.
    see, e.g. Schmoldt A, Veränderung der optischen Eigenschaften von PMMA durch Ionenbeschuß. PhD Thesis Technical University Berlin, Germany; No. D83 (1995) (in German)Google Scholar
  50. 50.
    Fink D, Möckel HJ, Melzer H, Klett R, Cardoso J, Montiel R, Vazquez H, Hosoi F, Omichi H, Wang L, Chadderton LT, Irradiation of plexiglas with heavy GeV ions: a study of destruction products. Appl Phys A64, 61–68 (1997)Google Scholar
  51. 51.
    Bacmeister GU, Petersen F, Enge W, Radiat Meas 25, 75 (1995)Google Scholar
  52. 52.
    Bohidar N, Radiation-induced polymerization and effects of nuclear radiation on polymers. J Teaching Res Chem 1, 31–39 (1994)Google Scholar
  53. 53.
    Mishra R, Tripathy SP, Sinha D, Dwivedi KK, Ghosh S, Khating DT, Müller M, Fink D, Optical and electrical properties of some electron and proton irradiated polymers. Nucl Instrum Methods B168, 59–64 (2000)Google Scholar
  54. 54.
    Mishra R, Electron induced modifications in some polymers. PhD. Thesis, North Eastern Hill University, Shillong, India (2001)Google Scholar
  55. 55.
    Hirata K, Saitoh Y, Narumi K, Nakajima Y, Kobayashi Y, Nonlinear effect of cluster irradiation on chemical modification of polycarbonate. Nucl Instrum Methods, in print (2002/03)Google Scholar
  56. 56.
    Gupta S, personal communication (2003)Google Scholar
  57. 57.
    Fink D, Hosoi F, Omichi H, Sasuga A, Amaral L, Infrared transmission of ion irradiated polymers. Radiat Eff Defects Solids 132 313–332 (1994), and refs. [7–13] thereinGoogle Scholar
  58. 58.
    Ferrain E, Legras R, Heavy-ion tracks in polycarbonate. Presented at the 5th Intl. Symposium on Swift Heavy Ions in Matter, May 22–25, 2002, Giardini Naxos, ItalyGoogle Scholar
  59. 59.
    Tripathy SP, Mishra R, Dwivedi KK, Ghosh S, Fink D, Proton induced modification in poly(ethylene terephthalate) Radiat Eff Defects Solids, in print (2003)Google Scholar
  60. 60.
    Papaleo RM, de Araujo MA, Livi RO, Study of the ion-beam induced amorphisation, bond breaking and optical gap change processes in PET, Nucl Instrum Methods 65 442–446 (1992), and: Papaleo RM, de Araujo MA, Livi RP, Effects of ion bombardment on the crystalline structure of polymers: the case of PET, Mater Res Soc Symp Proc 157 617 (1990)Google Scholar
  61. 61.
    Huang JM, Chu PP, Chang FC, Conformational changes and molecular motion of poly(ethylene terephthalte) annealed above glass temperature, Polymer 41, 1741–1748 (2000)Google Scholar
  62. 62.
    Lee EH, Lewis MB, Blau PJ, Mansur LK, Improved Surface properties of Polymer materials by multiple ion beam treatment. J Mater Res 6, 610–628 (1991)Google Scholar
  63. 63.
    Eßer M, Lösungsmittel-induzierte Delegation molekularer Sonden in latenten Kernspuren and ihre photophysikalische Analyse. PhD Thesis University Clausthal-Zellerfeld, Germany (1996) (in German)Google Scholar
  64. 64.
    Egusa S, Ishigura K, Tabata Y, Fast neutron irradiation effects on polymers. 2. Cross-linking and degradation of polystyrene. Macromol 13, 171–176 (1980)Google Scholar
  65. 65.
    Bouffard S, Balanzat E, Leroy C, Busnel JP, Guevelou G, Cross-links induced by swift heavy ion irradiation in polystyrene, Nucl Instrum Methods B131, 79–84 (1997)Google Scholar
  66. 66.
    Xu J, Hulett LD, Lewis TA, Tolk NH, light emission from polymers under positron and electron bombardment. Appl Surf Sci 85, 49–53 (1995)Google Scholar
  67. 67.
    Schlegel L, Schnabel W, Polymers in X-Ray, electron beam and ion beam lithography, Radiat Curing Polym Sci Technol 1 119–192 (1993), and many references thereinGoogle Scholar
  68. 68.
    Torrisi L Ion irradiation of polymethylmethacrylate (PMMA). Radiat Eff Defects Solids 145 285–296 (1998)Google Scholar
  69. 69.
    Chapiro A, Chemical modifications in irradiated polymers. Nucl Instrum Methods B32, 111–114 (1988)Google Scholar
  70. 70.
    Morimoto H Onoda H, Kato T, Sasaki Y, Saitoh K, Kato T, Unique resist profiles with Be and Si focussed ion beam lithography. J Vac Sci Technol B4 205–208 (1986)Google Scholar
  71. 71.
    Kubena RL, Stratton FP, Ward JW, Atkinson GM, Joyce RJ, Sub-20 nm-wide line fabrication in poly(methyl-methacrylate) using a Ga+ microprobe. J Vac Soc Technol B7, 1798–1801 (1989)Google Scholar
  72. 72.
    Stangl G, Cekan E, Jakob S, Fallmann W, Paschke F, Buchmann LM, Müller KP, Cspregi L, Heuberger A, Hammel E, Traher C, Löschner H, Stengl G, Resist materials for sub-0.51.μm pattern transfer with demagnifying ion projection lithography. Microelectron Eng 9, 289–293 (1989)Google Scholar
  73. 73.
    Fragalà ME, Licardello A, Puglisi O, Individual tracks in ion bombarded poly(merthyl methacrylate). Nucl Instrum Methods B131, 103–108 (1997)Google Scholar
  74. 74.
    Lee EM, Rao GR, Lewis MB, Mansur LK, Effects of electronic and recoil processes in polymers during ion implantation. J Mater Res 9, 1043–1050 (1994)Google Scholar
  75. 75.
    Betz N, Peterson E, LeMoel A, Swift heavy ions effects in fluoropolymers: radicals and cross-linking. Nucl Instrum Methods B116, 207–211 (1996)Google Scholar
  76. 76.
    Sun J, Zhang Y, Zhong X, Zhu X, Modification of polyfluoroethylene by radiation–1. Improvement in high temperature properties and radiation stability. Radiat Phys Chem 44, 655–659 (1994)Google Scholar
  77. 77.
    Oshima A, Tabata Y, Kudoh H, Seguchi T, Radiation induced cross-linking of polytetrafluoroethylene. Radiat Phys Chem 45, 269–273 (1995)Google Scholar
  78. 78.
    Makuuchi K, Asano M, Abe T, J Polym Sci Polym Chem Ed A14 697 (1976)Google Scholar
  79. 79.
    Schierholz K, Lappan U, Lunkwitz K, Electron beam irradiation of polytetrafluoro-ethylene in air: investigations on thermal behavior. Nucl In-strum Methods B151, 232–237 (1999)Google Scholar
  80. 80.
    Steckenreiter T, Balanzat E, Fuess H, Trautmann C, Pyrolytic effects induced by energetic ions in polymers. Nucl Instrum Methods B151, 161–168 (1999)Google Scholar
  81. 81.
    Torrisi L, Percolla R, Ion beam processing of polyvinylidene fluoride. Nucl Instrum Methods B117, 387–391 (1996)Google Scholar
  82. 82.
    Torrisi L, Radiation damage in PVT (polyvinyltoluene) by energetic ions. Radiat Eff Defects Solids 145, 271–284 (1998)Google Scholar
  83. 83.
    Günther M, Sahre K, Suchaneck G, Gerlach G, Eichhorn KJ, Influence of ion-beam induced chemical and structural modification in polymers on moisture uptake. Surf Coat Technol 142–144, 482–488 (2001)Google Scholar
  84. 84.
    Farenzena LS, Papaleo RM, Hallén A, de Araujo MA, Livi RP, Sundqvist BVR, Modifications in the chemical bonding and optical absorption of PPS by ion bombardment, Nucl Instrum Methods B105 134–138 (1995), and many references thereinGoogle Scholar
  85. 85.
    Rizzati MR, Araujo MA, Livi RP, The fluence effect of Ar++ bombardment in PPS. Nucl Instrum Methods B174, 475–481 (2001)Google Scholar
  86. 86.
    Geis MW, Randall JN, Mountain RW, Woodhouse JD, Bromley EI, Astoljki DK, Economou NP, Nitrocellulose as apositive or negative self-developing resist. J Vac Sci Technol B3, 343–349 (1985)Google Scholar
  87. 87.
    Harakawa K, Yasuoka Y, Gamo G, Namba S, Focused ion beam etching of resist materials. J Vac Sci Technol 4, 355–357 (1986)Google Scholar
  88. 88.
    Tripathy SP, Mishra R, Dwivedi KK, Ghosh S, Fink D, Khating DT, Response of cellulose detectors to different doses of 62 MeV protons. To be published in 2003Google Scholar
  89. 89.
    Friese K, Placek V, Mehnert R, Angert N, Spohr R, Trautmann Ch, Radiation-induced grafting of styrene onto polyimide ion track membranes. Nucl Instrum Methods B 105, 139–144 (1995)Google Scholar
  90. 90.
    Hnatowicz V, Petina V, Havrdnek V,Voseéek V, Novontnÿ J, Vacík J, Svorcík V, Rybka V, Kluge A, Degradation of polyimide and polyethyleneterephthalate irradiated with 150 and 200 keV Ar+ ions, studied by RBS and ERD techniques. In: Biennial Report 1999–2000; Nuclear Physics Institute Rez near Prague, p. 44Google Scholar
  91. 91.
    Karpuzov D, Kostov KL, Venkova E, Kirova R, Katardijev I, Carter G, XPS study of ion beam irradiation effects in polyimide layers. Nucl Instrum Methods B39, 787–791 (1989)Google Scholar
  92. 92.
    Rück DM, Brunner S, GSI-Nachrichten 8, 15 (1991)Google Scholar
  93. 93.
    Sasuga T, Oxidative irradiation effects on several aromatic polyimides. Polymer 29, 1562–1568 (1988)Google Scholar
  94. 94.
    Tripathy SP, Mishra R, Dwivedi KK, Khating DT, Ghosh S, Fink D, Proton dose dependent modification in track etching response in some polymers. Proc. 21st Int. Conf. on Nuclear Tracks in Solids, New Delhi, 21–25 Oct. 2002Google Scholar
  95. 95.
    Phukan T, Kanjilal D, Goswami TD, Das HL, Dielectric response of heavy ion irradiated PADC track detector. Nucl Instrum Methods B115, 116–119 (1999)Google Scholar
  96. 96.
    Phukan T, Kanjilal D, Goswami TD, Das HL, Study of optical properties of swift heavy ion-irradiated PADC polymer. 21st Int. Conf. on Nuclear Tracks in Solids, New Delhi, 21–25 Oct. 2002, session J9/OGoogle Scholar
  97. 97.
    Lounis Z, Fromm M, Barillon R, Chambaudet A, Allab M, Characterisation of the chemical and optical modifications induced by 22.5 MeV proton beam in CR-39 detectors. 21st Int. Conf. on Nuclear Tracks in Solids, New Delhi, 21–25 Oct. 2002Google Scholar
  98. 98.
    Thang NX, Doan TT, Structure effects in response function of CR-39 detector. Radiat Meas 25, 185–187 (1995)Google Scholar
  99. 99.
    Chong CS, Ishak I, Mahat RH, Amin YM, UV-Vis and FTIR spectra studies of CR-39 plastics irradiated with X-rays. Radiat Meas 28, 119–122 (1997)Google Scholar
  100. 100.
    Miller RD, Radiation sensitivity of soluble polysilane derivatives. In: Advances in chemistry, series 224, American Chemical Society, Washington, DC, 1990, p. 413Google Scholar
  101. 101.
    Seki S, Shibata H, Ban H, Ishigure K, Tagawa S, Radiation effects of ion and electron beams on poly (methylphenylsilane), Radiat Phys Chem 48, 539–544 (1996)Google Scholar
  102. 102.
    Yunshu X, Shigeru T, Masaki S, Seguchi T, Microstructure of SiC ceramics fabricated by pyrolysis of electron beam irradiated polymer containing precursors. Proc. 2nd Intl. Symp. On Material Chemistry in Nuclear Environment; Tsukuba, March 13–15, 2002Google Scholar
  103. 103.
    Seki S, Kanzaki K, Yoshida Y, Tagawa S, Shibata H, Asai K, Ishigure K, Positive-negative inversion of silicon based resist materials: Poly (di-n-hexylsilane) for ion beam irradiation. Jpn J Appl Phys 36, 5361–5364 (1997)Google Scholar
  104. 104.
    Seki S, Kanzaki K, Kunimi Y, Tagawa S, Yoshida Y, Kudoh H, Sugimoto M, Sasuga T, Seguchi T, Shibata H, LET effects of ion beam irradiation on poly(di-n-hexylsilane). Radiat Phys Chem 50, 423–427 (1997)Google Scholar
  105. 105.
    Seki S, Tagawa S, Ishigure K, Cromack KR, Trifunac AD, Observation of silyl radical in gamma-radiolysis of solid poly(dimethylsilane). Radiat Phys Chem 47, 217–219 (1996)Google Scholar
  106. 106.
    Herden V, Klaumünzer S, Schnabel W, Crosslinking of polysilanes by ion beam irradiation. Nucl Instrum Methods B146, 491— 495 (1998)Google Scholar
  107. 107.
    Shibata H, Hoshasen Kagaku 57, 33 (1994)Google Scholar
  108. 108.
    Pivin J, Colombo P, Ceramic coatings by ion irradiation of polycarbosilanes and poly-siloxanes, Parts I and II. J Mater Sci 32, 6163–6182 (1997)Google Scholar
  109. 109.
    Seki S, Kanzaki K, Yoshida Y, Tagawa S, Shibata H, Asai K, Ishigure K, Positive-negative inversion of silicon based resist materials: Poly (di-n-hexylsilane) for ion beam irradiation, Jpn J Appl Phys 36, 5361–5364 (1997)Google Scholar
  110. 110.
    Shibata H, Seki S, Tagawa S, Yoshida Y, Ishigure K, Time-dependent emission spectra from polysilane thin films irradiated by MeV ion beams Nucl Instrum Methods B105, 42–45 (1995)Google Scholar
  111. 111.
    Seki S, Shibata H, Ban H, Ishigure K, Tagawa S, Radiation effects of ion and electron beams on poly(methylphenylsilane). Radiat Phys Chem 48, 539–544 (1996)Google Scholar
  112. 112.
    Stone FGA, Graham WAG, Inorganic Polymers. Academic Press, New York and London, 1992Google Scholar
  113. 113.
    Ghadir M, Zimonyi E, Nagy J, Preparation and investigation of silicone rubber containing imide-siloxane copolymers. Angew Makromol Chem 214, 123136 (1994)Google Scholar
  114. 114.
    Julio CA, Higa OZ, Modificaçâoes de borracha de silicone pela tecnica de enxertia utilizando o metodo da pre-irradiacao em fonte de 60-Co. Anais do 4. Congresso Geral de Energia Nuclear, V. 1, 331–334. Available from: Biblioteca da Comisâo Nacional de Energia Nucléar, Rio de Janeiro, Brazil (1992) (in Portuguese)Google Scholar
  115. 115.
    Kumagai S, Wang X, Yoshimura N, Solid residue formation of RTV silicone rubber due to dry-band arcing and thermal decomposition. IEEE Trans Di-elect Elect Insul 5, 281–289 (1998)Google Scholar
  116. 116.
    Pignataro B, Pivin JC, Marletta G, High energy ion beam induced modification of the optical properties of polysiloxane films, 11th Intl. Conf. on Radiation Effects in Insulators, Lisbon, Sept. 3–7, 2001Google Scholar
  117. 117.
    Koo Y, Kim IT, Park WK, An experimental investigation on the degradation characteristics of the outdoor silicone rubber insulation due to sulfate and nitrate ions. IEEE Annual Report 2, 370–373; Proc. Intl. Conf. on Electrical Insulation and Dielectric Phenomena, Minneapolis, USA, 19.-22. 10. 1997Google Scholar
  118. 118.
    Suzuki Y, Kusakabe M, Iwaki M, Suzuki M, Surface modification of silicone rubber by ion implantation. Nucl Instrum Methods B32, 120–124 (1988)Google Scholar
  119. 119.
    Hsie GH, Lee SD, Chang PCT, Kao CY, Surface characterization and biological properties study of silicone rubber membrane grafted with phospholipid as biomaterial via plasma induced graft copolymerization. J Biomed Mater Res 42, 134–147 (1998)Google Scholar
  120. 120.
    Naddaf M, Chakane S, Jain S, Hullavarad SC, Bhoraskar SV, Mandah AB, Modification of sensing properties of metallophthalocyanine by ECR plasma, Nucl Instrum Methods, submitted in 2001Google Scholar
  121. 121.
    Fragalà ME, Compagnini G, Torrisi L, Puglisi O, Ion beam assisted unzipping of PMMA. Nucl Instrum Methods B141, 169–173 (1998)Google Scholar
  122. 122.
    Faupel F, Gupta D, Silverman BD, Ho PS, Direct measurements of Cu diffusion into a polyimide below the glass transition temperature. Appl Phys Lett 55, 357–359 (1989)Google Scholar
  123. 123.
    Ogawa Y, Tokunaga H, Murahra M, photochemical nucleation of copper on polyimide surface with 10 ns laser irradiation. Proc. MRS Boston 27.11.1.12. 2001, Contribution S5. 8Google Scholar
  124. 124.
    Fink D, Petrov AV, Rao V, Wilhelm M, Demyanov S, Szimkowiak P, Behar M, Alegaonkar PS, Chadderton LT, Production parameters for the formation of metallic nanotubules in etched tracks. Proc. of the 21th Intl. Conf. on Nuclear tracks in solids; Oct. 21–25, 2002, New Delhi, India, and Petrov A, Production of micro-and nanoelectrotechnic devices by help of ion tracks in insulators. PhD. Thesis, Fernuniversität Hagen, to be published in 2004Google Scholar
  125. 125.
    Hietel B, Wittmaack K, Unpublished contribution at the Intl. Symp. on Materials Science Applications of Ion Beam Techniques, Seeheim, Germany, 1996Google Scholar
  126. 126.
    Menzel N, Wittmaack H, Incorporation of chlorine in a polymer film due to MeV proton bombardment. Nucl Instrum Methods B166–167, 632–636 (2000)Google Scholar
  127. 127.
    Hnatowicz V, Vacík J, Perina V, Svorcik V, Rybka V, Popok V, Jankovskij O, Fink D, Klett R. Doping of latent tracks in polyethylene by iodine diffusion. Radiat Meas 25, 71–72 (1995)Google Scholar
  128. 128.
    Fink D, Klett R, Hu X, Müller M, Schiwietz G, Xiao G, Chadderton LT, Wang L, Mathis C, Hnatowicz V, Vacík J, Characterization of aged latent ion tracks in polyimide. Nucl Instrum Methods B116 66–71 (1996) and refs. [13–15] thereinGoogle Scholar
  129. 129.
    Kinomura A, Horino Y, Mokuno Y, Chayahara A, Fuji K, Ion mass dependence of normalized regrowth rate in MeV ion beam induced epitaxial crystallization. Nucl Instrum Methods B106, 277–280 (1995)Google Scholar
  130. 130.
    Karpuzov D, Kostov KL, Venkova E, Kirova R, Katardijev I, Carter G, XPS study of ion beam irradiation effects in polyimide layers. Nucl Instrum Methods B39, 787–791 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • D. Fink

There are no affiliations available

Personalised recommendations