Skip to main content

Mechanisms of Particle—Polymer Interaction

  • Chapter
Fundamentals of Ion-Irradiated Polymers

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 63))

Abstract

First some basic aspects of the interaction of energetic particles with matter are introduced. For further details, the reader is referred to standard handbooks of nuclear physics [1–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marmier P, Kernphysik. Vols. 1 and 2. ( E. Sheldon and R. Szostak (eds.)). Verlag des Vereins der Mathematiker und Physiker an der ETH Zürich, 1968 (in German)

    Google Scholar 

  2. Segré E, Experimental Nuclear Physics. Wiley, New York; Chapman & Hall, London, 1953, Vols. I and I I

    Google Scholar 

  3. Kaplan I, Nuclear Physics. Addison—Wesley, Cambridge, 1955

    Google Scholar 

  4. Evans RD, The Atomic Nucleus. McGraw—Hill, New York, 1955

    Google Scholar 

  5. v. Buttler H, Einführung in die Grundlagen der Kernphysik. Akademische Verlagsgesellschaft, Frankfurt/Main, 1964 (in German)

    Google Scholar 

  6. Nuclear Data Sheets, Sets 5 and 6: Energy Levels of Light Nuclei. Nat. Academy of Science, Washington, NCR 61–5, 6 (1962)

    Google Scholar 

  7. Karlsruher Nuklidkarte KFZ Karlsruhe, Germany, 1974 (in German)

    Google Scholar 

  8. Fleming R, Downing G, Stone C, Grazman B, Report on “Neutron Depth Profiling”. NBS Gaithersburg, Maryland, USA, 1988

    Google Scholar 

  9. Fink D, Neutron Depth Profiling. Report HMI-B539 of the Hahn-MeitnerInstitute Berlin, 1996

    Google Scholar 

  10. Wang L, Verteilung leichter Ionen in Festkörpern nach Implantation und thermischer Behandlung — Experimente und theoretische Untersuchungen. PhD. Thesis, Free University Berlin, 1990 (in German)

    Google Scholar 

  11. Lindhard J, Scharff M, Schiott HE, Mater Fys Medd Dan Vidensk Selsk 33, 14 (1963)

    Google Scholar 

  12. Ziegler JF, Biersack JP, Littmark U, The Stopping and Ranges of Ions in Solids, Vol 1. Pergamon, Oxford, New York (1985)

    Google Scholar 

  13. Sigmund P, Collision theory of displacement damage, ion ranges, and sputtering. Rev Roum Phys 7, 823–870 (1972)

    Google Scholar 

  14. Cruz SA, On the energy loss of heavy ions in amorphous materials. Rad Eff 88, 159–215 (1986)

    CAS  Google Scholar 

  15. Bohr N. Mat Fys Medd Dan Vidensk Selsk 18, 8 (1948)

    Google Scholar 

  16. Biersack, JP, Ziegler F, Refined universal potentials in atomic collisions. Nucl Instrum Methods 194, 93–100 (1982)

    CAS  Google Scholar 

  17. Lindhard J. Mat Fys Medd Dan Vidensk Selsk 34, 14 (1965)

    Google Scholar 

  18. Goldstein H, Classical Mechanics, 2nd edn Addison — Wesley Publ. Comp. (1980)

    Google Scholar 

  19. Slater JC, Quantum Theory of Molecules and Solids. MacGraw — Hill Book Company, Vol 1 (1963)

    Google Scholar 

  20. Oen OS, Robinson MT, Slowing-down time of energetic ions in solids. J Appl Phys 46, 5069–5071 (1975) and: Sabelli NH, Benedek R, Gilbert TL, Ground-state potential curves for Ale and Al in the repulsive region. Phys Rev A20, 677–688 (1979)

    Google Scholar 

  21. Sepp WD, Kolb D, Sengler W, Hartung H, Fricke B, Relativistic Dirac — FockSlater program to calculate potential-energy curves for diatomic molecules. Phys Rev A33, 3679–3687 (1986)

    CAS  Google Scholar 

  22. Hohenberg P, Kohn W, Inhomogeneous electron gas. Phys Rev 136B, 864871 (1964)

    Google Scholar 

  23. Gombas P, Statistische Behandlung des Atoms. In: Handbuch der Physik, Vol 36. (Fluegge, S. (ed.)). Springer, Berlin (1956) (in German)

    Google Scholar 

  24. Firsov OB. Soy Phys JETP 5, 1192 (1957)

    CAS  Google Scholar 

  25. Abrahamson AA, Hatcher RD, Vineyard CH, Interatomic repulsive potentials as very small and intermediate separations. Phys Rev 121, 159–171 (1961)

    CAS  Google Scholar 

  26. Abrahamson AA, Born — Mayer-type interatomic potential for neutral ground-state atoms with Z = 2 to Z = 105. Phys Rev 178, 76–79 (1969)

    CAS  Google Scholar 

  27. Guenther K, Uber die Existenz eines Maximalprinzips als äquivalente Formulierung des Thomas — Fermi 2014; Dirac Modells and das TFDWechselwirkungspotential in Atomen. Ann Phys 14, 296–309 (1964)

    CAS  Google Scholar 

  28. Kumakhov MA, Komarov FF, Energy Loss and Ion Ranges in Solids, Gordon and Breach Publ. Inc New York (1981)

    Google Scholar 

  29. Wedepohl PT. Proc Phys Soc 92, 79 (1967)

    CAS  Google Scholar 

  30. Guenther K. Kernenergie, 7, 443 (1964)

    CAS  Google Scholar 

  31. Nikulin VK. Sov Phys Tech Phys 16, 28 (1971), and: Gordon RG, Kim YS. J Chem Phys 56, 3122 (1972)

    Google Scholar 

  32. Wilson WD, Bisson CL, Inert gases in solids: Interatomic potentials and their influence on rare-gas mobility. Phys Rev B3, 3984–3992 (1971)

    Google Scholar 

  33. Lindhard J Nielsen V, Scharff M. Mat Fys Medd Dan Vidensk Selsk 36 10 (1968)

    Google Scholar 

  34. Wilson WD, Haggmark LG, Biersack JP, Calculations of nuclear stopping, ranges, and straggling in the low-energy region. Phys Rev 15B, 2458–2468 (1977)

    CAS  Google Scholar 

  35. Bethe HA. Ann Phys 5, 325 (1930), and: Bethe HA, Jackie RW, Intermediate Quantum Mechanics, 2nd edn Benjamin, New York (1968)

    Google Scholar 

  36. Hill KW, Merzbacher E, Polarization in distant Coulomb Collisions of charged particles with atoms. Phys Rev A9, 156–165 (1974)

    CAS  Google Scholar 

  37. Schiwietz G, Coupled-channel calculation of stopping powers for intermediate-energy light ions penetrating atomic H and He targets. Phys Rev A42, 296–306 (1990)

    CAS  Google Scholar 

  38. Grande PL, Schiwietz G, Nonperturbative stopping-power calculation for bare and neutral hydrogen incident on He. Phys Rev A47, 1119–1122 (1993), and: Grande PL, Schiwietz G, Energy loss of slow ions: one-band calculations for alkaline metals. Phys Lett A163, 439–446 (1992)

    CAS  Google Scholar 

  39. Northcliffe LC, Schilling RF. Range and stopping power tables for heavy ions. Nucl Data Tables 7, 233–463 (1970)

    CAS  Google Scholar 

  40. Andersen HH, Ziegler JF, Hydrogen Stopping Powers and Ranges of Ions in Matter, New York, Pergamon, Vol. 3 (1977)

    Google Scholar 

  41. Janni F, At Data Nucl Tables 27, 147 (1982)

    CAS  Google Scholar 

  42. Lindhard J. Mat Fys Medd Dan Vid Selsk 28, 8 (1954), and Lindhard J, Scharff M, Energy dissipation by ions in the keV region. Phys Rev 124, 128130 (1961)

    Google Scholar 

  43. Firsov OB. Sov Phys JETP 9, 1076 (1959)

    Google Scholar 

  44. Echenique PM, Nieminen RM, Ritchie RH, Density functional calculation of stopping power of an electron gas for slow ions. Solid State Commun 37, 779–781 (1981), and: Echenique PM, Nieminen RM, Ashley JC, Ritchie RH, Nonlinear stopping power of an electron gas for slow ions. Phys Rev A33, 897–904 (1986)

    CAS  Google Scholar 

  45. Golser R, Semrad D, Observation of a striking departure from velocity proportionality in low-energy electronic stopping. Phys Rev Lett 66, 1831–1833 (1991)

    CAS  Google Scholar 

  46. Montenegro EC, Meyerhof WE, Sum rules and electron — electron interaction in two-center scattering. Phys Rev A43, 2289–2293 (1991)

    CAS  Google Scholar 

  47. Vargas-Aburto C, Cruz SA, Montenegro EC, Mean projected ranges of light ions in solids from a new stopping power equation. Rad Eff 80, 23–34 (1984)

    CAS  Google Scholar 

  48. Mann A, Brandt W, Material dependence of low-velocity stopping powers. Phys Rev B 24, 4999–5002 (1981)

    CAS  Google Scholar 

  49. Brandt W, Kitagawa M, Effective stopping-power charges of swift heavy ions in condensed matter. Phys Rev B 25, 5631–5637 (1982)

    CAS  Google Scholar 

  50. Betz HD, Charge state and charge-changing cross-sections of fast heavy ions penetrating through gases and solid media. Rev Mod. Phys 44, 465–539 (1972)

    CAS  Google Scholar 

  51. Apel PYu, Schulz A, Spohr R, Trautmann C, Vutsudakis V, Tracks of very heavy ions in polymers, Nucl Instrum Methods B131, 55–63 (1997)

    CAS  Google Scholar 

  52. for Z2 stopping power oscillations, see, e.g.: Fink D, Biersack JP, Städele M, Tjan K, Cheng VK, Nitrogen depth profiling using the 14N(n,p)14C reaction. Nucl Instrum Methods 218, 171–175 (1983) and: Fink D, Biersack JP, Städele M, Tjan K, Cheng VK, Z2 stopping power oscillations as derived from range measurements. Nucl Instrum Methods 218, 817–820 (1983)

    Google Scholar 

  53. Wilson RG, Ion implantation ranges and range straggles in organic polymers and comparison with calculations. J Appl Phys 73, 2215–2219 (1992)

    Google Scholar 

  54. Bragg WH, Kleemann R. Phil Mag 10, 318 (1905)

    CAS  Google Scholar 

  55. Crank I, Nicolson P. Proc Cambridge Philos Soc 43, 1 (1947)

    Google Scholar 

  56. Ziegler JF, Manoyan J, The stopping of ions in compounds. Nucl Instrum Methods B35, 215–228 (1988)

    Google Scholar 

  57. Sabin JR, Oddenshede J, Theoretical stopping cross sections of C-H, CC, and C=C bonds for swift protons. Nucl Instrum Methods B27, 280–286 (1987)

    Google Scholar 

  58. Grande PL Behar M, Biersack JP, Zawislak FC, Range parameters of heavy ions implanted into Be films. Nucl Instrum Methods, B45 689–692 (1991), and references therein

    Google Scholar 

  59. Grande PL, Behar M, Fink D, Zawislak F Range parameters study of medium-heavy ions implanted into light substrates. Nucl Instrum Methods B61, 282–290 (1992)

    Google Scholar 

  60. Fichtner PFP Behar M, Fink D, Goppelt P, Grande PL, Range parameters study of Pb and Au implanted into SiC films. Nucl Instrum Methods B64 668–671 (1992)

    Google Scholar 

  61. Perez A, Döbeli M, Synal HA, Measurements of point defect creation related to high densities of electronic excitations produced by energetic carbon cluster bombardments. Nucl Instrum Methods B88, 25–28 (1994)

    CAS  Google Scholar 

  62. Aoki T, Seki T, Tanomura M, Matsuo J, Insepov Z, Yamada I, Molecular Dynamics simulation of fullerene cluster ion impact. In: Atomistic mechanisms in Ion Beam synthesis and irradiation of materials. Mater Res Soc Symp Proc, Vol. 504 (Barbour JC, Roorda S, Ila D et al. (eds.)), pp. 81–86 (1999)

    Google Scholar 

  63. Baudin K, Brunelle A, Chabot M, Della-Negra S, Depauw J, Gardes D, Hakansson P, Le Beyec Y, Billebaud A, Fallavier M, Remillieux J, Poizat JC, Thomas JP, Energy loss by MeV carbon clusters and fullerene ions in solids. Nucl Instrum Methods B94, 341–344 (1994)

    CAS  Google Scholar 

  64. Tombrello TA, Distribution of damage along an MeV ion track. Nucl Instrum Methods B83, 508–512 (1993)

    CAS  Google Scholar 

  65. Perez A, Döbeli M, Synal HA, MeV cluster impacts and related phenomena. Nucl Instrum Methods B116, 13–17 (1996)

    CAS  Google Scholar 

  66. Chu WK, Calculation of energy straggling for protons and helium ions. Phys Rev A13, 2057–2060 (1976)

    CAS  Google Scholar 

  67. Biersack JP, Basic aspects of high energy implantation. Nucl Instrum Methods B35, 205–214 (1988)

    Google Scholar 

  68. Biersack JP, Ernst E, Monge A, Roth S, Tables of electronic and nuclear stopping powers, and energy strggling for low energy ions. HMI-B175 (1975)

    Google Scholar 

  69. Behar M Fichtner PFP Olivieri CA, de Souza JP, Zawislak FC, Biersack JP, Fink D, Städele M, Range profiles of 10 to 380 keV 120Sn and 133Cs in amorphous silicon. Rad Eff 90, 103–110 (1985)

    Google Scholar 

  70. Behar M, Biersack JP, Fichtner PFP, de B. Leite Filho CV, Fink D, Olivieri CA, de Souza JP, Zawislak FC, Range and range straggling of 15 to 350 keV 69Ga in amorphous silicon. Rad Eff Lett 85, 117–122 (1984)

    CAS  Google Scholar 

  71. Fichtner PFP, Behar M, Olivieri CA, Livi,RP de Souza JP, Zawislak FC, Fink D, Biersack JP, Large Zi-range effect for Eu, Yb, and Au ions implanted in amorphized silicon. Radiat Eff 87, 191–195 (1986)

    CAS  Google Scholar 

  72. Littmark U, Ziegler JF, Ranges of energetic ions in matter. Phys Rev 23 A, 64–72 (1981)

    Google Scholar 

  73. Lindhard J, Scharff M, Kgl Danske Vid Selsk, Mater Fys Medd 15, 27 (1953)

    Google Scholar 

  74. Lindhard J, Nielsen V, Scharff M, Thomsen PV, Danske Vid Selskab, Mater Fys. Medd 33, no. 10 (1963)

    Google Scholar 

  75. Littmark U, Ziegler JF, Handbook of Range Distributions for Energetic Ions in All Elements, Vol. 6. Pergamon Press, New York (1980)

    Google Scholar 

  76. Ziegler JF, Handbook of Stopping Cross Sections for Energetic Ions in All Elements. Pergamon Press, 1980

    Google Scholar 

  77. Biersack JP, Ranges of recoil atoms in isotropic stopping media. Z Phys 211, 495–501 (1968)

    CAS  Google Scholar 

  78. Biersack JP, Ziegler JF, Ion Implantation Techniques. (H. Ryssel and H. Glawischnig (eds.)), Springer-Verlag Berlin und Heidelberg, 1982

    Google Scholar 

  79. Ashworth DG, Bowyer MDJ, Oven R, A revised version of PRAL — the projected range algorithm. J Phys D Appl Phys 240, 1376–1380 (1991)

    Google Scholar 

  80. Liang JH, Projected range and range straggling of ion-implanted lead in polystyrene materials. Appl Phys A64, 403–405 (1997)

    CAS  Google Scholar 

  81. Krause U, Wedell R, Critical remarks on the paper: New Projected Range Algorithm as derived from Transport Equations by J.P. Biersack, Z Phys A327, 1–4 (1982)

    Google Scholar 

  82. Biersack JP, Rapid calculatiuons of high energy range distributions. Radiat Eff Def Sol 110, 161–165 (1989)

    Google Scholar 

  83. Kahn H, “Applications of the Monte Carlo”, US Atomic Energy Commission, April 1954, Rand Corp., Santa Monica, Cal. AECU-3259 Physics

    Google Scholar 

  84. Robinson MT, Torrens IM, Computer simulation of atomic displacement cascades in solids in the binary-collision approximation. Phys Rev B9, 5008–5024 (1974)

    CAS  Google Scholar 

  85. Biersack JP, Haggmark LG, The transport and ranges in matter. Nucl In-strum Methods 174, 257–269 (1980)

    CAS  Google Scholar 

  86. Biersack JP, Ion Beam Modifications of Insulators, Chap. I. ( P. Mazzoldi and G.W. Arnold (eds.) ), Elsevier Publ. Corp., 1987

    Google Scholar 

  87. Ziegler JF, Biersack JP, Littmark U, Proceedings of the US — Japan Seminar on Charged Particle Penetration Phenomena, ORNL report CONF-820131, 1982, p. 88

    Google Scholar 

  88. For a recent example, see: Hill DJT, Milne KA, O’Donell JH, Pomery PJ, A recent advance in the determination of scission and cross-linking yields of gamma-ray irradiated polymers. In: Irradiation of Polymers: Fundamentals and technological applications, (RL Clough and SW Shalaby (eds.)), Am Chem Soc Symposium series 620, Washington, USA, 1996

    Google Scholar 

  89. Paul H, Schinner A, Judging the reliability of stopping power tables and programs for heavy ions. Presented at the 5th Intl. Symposium on “Swift Heavy Ions in Matter”, May 22–25, 2002, Giardini Naxos, Italy

    Google Scholar 

  90. Ziegler JF (2001) SRIM, version 2000.40, http://www.srim.org

    Google Scholar 

  91. Grande PL, Schiwietz G, Program CaSP, http://www. hmi.de/people/ schiwietz/ casp. html (2000/2001)

    Google Scholar 

  92. Sigmund P, Schinner A, Program BT, Nucl Instrum Methods B, in press (STOP01 issue) (2002)

    Google Scholar 

  93. Paul H, Schinner A, Program MSTAR, http://www.exphys.uni-linz.ac.at/stopping (2001);

    Google Scholar 

  94. Paul H, Schinner A, An empirical approach to the stopping powqer of solids and gases for ions from 3Li to 18Ar. Nucl Instrum Methods B179, 299–315 (2001), and: Paul H, Schinner A, Judging the reliability of stopping power tables for heavy ions (2002), presented at the 5th Intl. Symposium on “Swift Heavy Ions in Matter”, May 22–25, 2002, Giardini Naxos, Italy

    Google Scholar 

  95. Adesida I, Karapiperis L, The range of light ions in polymeric resists. J Appl Phys 56, 1801–1807 (1984)

    CAS  Google Scholar 

  96. Tennant DM, Dayem AH, Howard RE, Westerwick EH, Range of boron ions in polymers: a SIMS study. J Vac Sci Technol B3, 458–461 (1985)

    CAS  Google Scholar 

  97. Calcagno L, Foti G, Ion irradiation of polymers. Nucl Instrum Methods B59/60 1153–1158 (1991), and references therein

    Google Scholar 

  98. Fink D, Biersack JP, Chen JT, Städele M, Tjan K, Behar M, Olivieri CA, Zawislak FC, Distributions of light ions and foil destruction after irradiation of organic polymers. J Appl Phys 58, 68–676 (1985)

    Google Scholar 

  99. Guimaräes RB, Amaral L, Behar M, Fichtner PFP, Zawislak FC, Fink D, Implanted boron depth profiles in the AZ111 photoresist. J Appl Phys 63, 20832013; 2085 (1988)

    Google Scholar 

  100. Guimarâes RB, Amaral L, Behar M, Fink D, Zawislak FC, Depth profiles of Li ions implanted into the photoresist AZ111. J Mater Res 3, 1422–1426 (1988)

    Google Scholar 

  101. Hnatowicz V, Havranek V, Kvitek J, Perina V, Svorcik V, Rybka V, Modifications of polypropylene induced by the implantation of iodine ions. Jpn J Appl Phys 32, 1810–1813 (1993)

    CAS  Google Scholar 

  102. Apel PYu, Schulz A, Spohr R, Trautmann C, Vutsadakis V, Track size and track structure in polymer irradiated by heavy ions. Nucl Instrum Methods B146, 468–474 (1998)

    CAS  Google Scholar 

  103. Trautmann C, Untersuchungen von Spuren hochenergetischer Ionen in Festkörpern (in German). PhD. Thesis Univ. Frankfurt/Main, 1994

    Google Scholar 

  104. Esser M, Lösungsmittel-induzierte Delegation molekularer Sonden in latenten Kernspuren and ihre photophysikalische Analyse (in German). PhD. Thesis, Technical University Clausthal, Germany (1996)

    Google Scholar 

  105. Bacmeister GU, Diplomarbeit, Univ. Kiel, 1994 (in German, unpublished), and personal communications 1995

    Google Scholar 

  106. See, e.g., Kulshreshta A, Laldawngliana C, Mishra R, Ghosh S, Dwivedi KK, Brandt R, Fink D, Energy losses and mean ranges of 129Xe ions in mica and makrofol-KG. Radiat Eff Defects Solids 147, 151–164 (1999)

    Google Scholar 

  107. Geisel H, Untersuchungen zur Abbremsung von Schwerionen in Materie im Energiebereich von (0.5–10) MeV/u. PhD. Thesis, Justus-Liebig-Universität Gießen (1982) (in German), and: GSI-Report 12–82, 107 ( 1982 ) Darmstadt, Germany

    Google Scholar 

  108. Zhao Q-T, Wang K-M, Liu J-T, Liu X-D, Deng S-M, Lin J, Yao K-J, Range profiles of implanted argon ions in polymers. Radiat Eff Defects Solids 128, 287–293 (1994)

    CAS  Google Scholar 

  109. Sigmund P, A note on integral equations of the Kinchin-Pease type. Radiat Eff 1, 15–18 (1969)

    Google Scholar 

  110. Norgett MJ, Torrens MT, A proposed method of calculating displacement dose rates. Nucl Eng Des 33, 50–54 (1974)

    Google Scholar 

  111. Magee JL Chatterjee A, Theoretical aspects of radiation chemistry. In: Radiation Chemistry, Farhataziz and Michael, A. (eds.), VCH Publ., pp. 137–171

    Google Scholar 

  112. Vacík J, Cervenâ J, Fink D, Klett R, Hnatowicz V, Popok V, Odzhaev V, High fluence boron implantation into polymers. Radiat Eff Defects Solids 143, 139–156 (1997). and: Popok VN, Khaibullin RI, Bazarov VV, Valeev VF, Hnatowicz V, Machkova A, Odzhaev VB (2001), Anomalous depth distribution of Fe+ and Co+ ions in polyimide under high fluence implantation, 11th Intl. Conf. on Radiation Effects in Insulators, Lisbon, Sept. 3–7, 2001

    Google Scholar 

  113. Fink D, Chadderton LT, Hosoi F, Omichi H, Schmoldt A, Depth distribution of infrared absorption of ion-irradiated PETP. Radiat Eff Defects Solids 133, 121–131 (1995)

    CAS  Google Scholar 

  114. Soares MRF, Fink D, Müller M, Behar M, 1°B+ Ion Implantation into Photoresist; to be submitted to Appl Phys A (2003)

    Google Scholar 

  115. Fink D, Müller M, Stettner U, Behar M, Fichtner P, Zawislak FC, Koul S, Non-regular depth profiles of light ions implanted into organic polymer films. Nucl Instrum Methods B2, 150–154 (1988)

    Google Scholar 

  116. Fink D, Müller M, Ghosh S, Hnatowicz V, Vacík J, Tomographic study of the three-dimensional distribution of a high-fluence implant in a polymer. Appl Phys A68, 429–434 (1999)

    CAS  Google Scholar 

  117. Fink D, Müller M, Petrov A, Klett R, Palmetshofer L, Klett R, Palmetshofer L, Hnatowicz V, Vacík J, Cervenâ J, Chadderton LT, Aqueous marker penetration into ion-irradiated polyimide. Nucl Instrum Methods B191, 662–668 (2002)

    CAS  Google Scholar 

  118. Fink D, Müller M, Klett R, Vacík J, Hnatowicz V, Cervenâ J, Three-dimensional implantation distribution of lithium implanted into pyrographite, as revealed by solid state tomography in combination with neutron depth profiling. Nucl Instr Meth B103, 423–428 (1995)

    CAS  Google Scholar 

  119. Fink D, Chung WH, Klett R, Döbeli M, Synal HA, Chadderton LT, Wang L, On the dyeing of ion tracks in polymers. Nucl Instrum Methods B108, 377–384 (1995)

    Google Scholar 

  120. Fink D, Müller M, Ghosh S, Hnatowicz V, Vacík J, Tomographic study of the three-dimensional distribution of a high-fluence implant in a polymer. Appl Phys A68, 87–91 (1999)

    CAS  Google Scholar 

  121. Fink D, Klett R, Chung WH, Grünwald R, Döbeli M, Ames F, Chadderton LT, Vacík J, Hnatowicz V, Doping of C,;+ (n = 1, 3, 5, 8) cluster ion tracks in polyimide. Radiat Eff Defects Solids 140, 3–20 (1996)

    CAS  Google Scholar 

  122. Fink D, Chadderton LT, Cruz SA, Fahrner WR, Hnatowicz V, Te Kaat EH, Melnikov AA, Varichenko VS, Zaitsev AM, Ion track doping. Radiat Eff Defects Solids 132, 81–90 (1994)

    CAS  Google Scholar 

  123. Klett R, “Charakterisierung von hochenergetischen Schwerionenspuren in Polyimid”, PhD. Thesis, Humboldt-University, Berlin 1996 (in German)

    Google Scholar 

  124. Krause-Rehberg R, Bondarenko V, Redmann F, Börner F, Proc. 2nd Intl. Symp. On material chemistry in nuclear environment, Tsukuba, March 1315, 2002

    Google Scholar 

  125. Hirata K, Kobayashi Y, Hishita S, Ujihira Y, Damage depth-profiling of Au+ and O+-irradiated amorphous PEEK by monoenergetic positron beams. Appl Phys A64, 491–495 (1997)

    CAS  Google Scholar 

  126. Hirata K, Kobayashi Y, Hishita S, Saitoh Y, Damage profile of ion-implanted polycarbonate studied using a variable-energy positron beam. Nucl Instrum Methods B164–165, 471–475 (2000)

    Google Scholar 

  127. Hirata K, Kobayashi S, Saitoh Y, Hishita S, Correlation between electronic energy deposition and positron annihilation Doppler broadening for ion-implanted polymers. Nucl Instrum Methods B171, 236–239 (2000)

    CAS  Google Scholar 

  128. Bletos IV, Hercules DM, VanLeyen D, Benninghoven A, Time-of-flight secondary ion mass spectrometry of polymers in the mass range 500–10000. Macromol 20, 407–413 (1987)

    Google Scholar 

  129. Koul SL, Campbell LD, Chadderton LT, Langroo M, Fink D, Biersack JP, ESR and track-etch studies of irradiated polymers, Nucl Instrum Methods B32, 383–388 (1988)

    Google Scholar 

  130. Sigmund P, Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys Rev 184, 383–416 (1969)

    CAS  Google Scholar 

  131. see, e.g. Dennis DL, Giedd RE, Wang YQ, Glass GA, Ion beam mixing of metal/fluoropolymer interfaces. 15th AIP Intl. Conf. on the application of accelerators in research and industry; Proc. 415, 792–795 (1999)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Behar, M., Fink, D. (2004). Mechanisms of Particle—Polymer Interaction. In: Fink, D. (eds) Fundamentals of Ion-Irradiated Polymers. Springer Series in Materials Science, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07326-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07326-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05709-0

  • Online ISBN: 978-3-662-07326-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics