Mechanisms of Particle—Polymer Interaction

  • M. Behar
  • D. Fink
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 63)


First some basic aspects of the interaction of energetic particles with matter are introduced. For further details, the reader is referred to standard handbooks of nuclear physics [1–5].


Cellulose Lithium Boron Helium Epoxy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marmier P, Kernphysik. Vols. 1 and 2. ( E. Sheldon and R. Szostak (eds.)). Verlag des Vereins der Mathematiker und Physiker an der ETH Zürich, 1968 (in German)Google Scholar
  2. 2.
    Segré E, Experimental Nuclear Physics. Wiley, New York; Chapman & Hall, London, 1953, Vols. I and I IGoogle Scholar
  3. 3.
    Kaplan I, Nuclear Physics. Addison—Wesley, Cambridge, 1955Google Scholar
  4. 4.
    Evans RD, The Atomic Nucleus. McGraw—Hill, New York, 1955Google Scholar
  5. 5.
    v. Buttler H, Einführung in die Grundlagen der Kernphysik. Akademische Verlagsgesellschaft, Frankfurt/Main, 1964 (in German)Google Scholar
  6. 6.
    Nuclear Data Sheets, Sets 5 and 6: Energy Levels of Light Nuclei. Nat. Academy of Science, Washington, NCR 61–5, 6 (1962)Google Scholar
  7. 7.
    Karlsruher Nuklidkarte KFZ Karlsruhe, Germany, 1974 (in German)Google Scholar
  8. 8.
    Fleming R, Downing G, Stone C, Grazman B, Report on “Neutron Depth Profiling”. NBS Gaithersburg, Maryland, USA, 1988Google Scholar
  9. 9.
    Fink D, Neutron Depth Profiling. Report HMI-B539 of the Hahn-MeitnerInstitute Berlin, 1996Google Scholar
  10. 10.
    Wang L, Verteilung leichter Ionen in Festkörpern nach Implantation und thermischer Behandlung — Experimente und theoretische Untersuchungen. PhD. Thesis, Free University Berlin, 1990 (in German)Google Scholar
  11. 11.
    Lindhard J, Scharff M, Schiott HE, Mater Fys Medd Dan Vidensk Selsk 33, 14 (1963)Google Scholar
  12. 12.
    Ziegler JF, Biersack JP, Littmark U, The Stopping and Ranges of Ions in Solids, Vol 1. Pergamon, Oxford, New York (1985)Google Scholar
  13. 13.
    Sigmund P, Collision theory of displacement damage, ion ranges, and sputtering. Rev Roum Phys 7, 823–870 (1972)Google Scholar
  14. 14.
    Cruz SA, On the energy loss of heavy ions in amorphous materials. Rad Eff 88, 159–215 (1986)Google Scholar
  15. 15.
    Bohr N. Mat Fys Medd Dan Vidensk Selsk 18, 8 (1948)Google Scholar
  16. 16.
    Biersack, JP, Ziegler F, Refined universal potentials in atomic collisions. Nucl Instrum Methods 194, 93–100 (1982)Google Scholar
  17. 17.
    Lindhard J. Mat Fys Medd Dan Vidensk Selsk 34, 14 (1965)Google Scholar
  18. 18.
    Goldstein H, Classical Mechanics, 2nd edn Addison — Wesley Publ. Comp. (1980)Google Scholar
  19. 19.
    Slater JC, Quantum Theory of Molecules and Solids. MacGraw — Hill Book Company, Vol 1 (1963)Google Scholar
  20. 20.
    Oen OS, Robinson MT, Slowing-down time of energetic ions in solids. J Appl Phys 46, 5069–5071 (1975) and: Sabelli NH, Benedek R, Gilbert TL, Ground-state potential curves for Ale and Al in the repulsive region. Phys Rev A20, 677–688 (1979)Google Scholar
  21. 21.
    Sepp WD, Kolb D, Sengler W, Hartung H, Fricke B, Relativistic Dirac — FockSlater program to calculate potential-energy curves for diatomic molecules. Phys Rev A33, 3679–3687 (1986)Google Scholar
  22. 22.
    Hohenberg P, Kohn W, Inhomogeneous electron gas. Phys Rev 136B, 864871 (1964)Google Scholar
  23. 23.
    Gombas P, Statistische Behandlung des Atoms. In: Handbuch der Physik, Vol 36. (Fluegge, S. (ed.)). Springer, Berlin (1956) (in German)Google Scholar
  24. 24.
    Firsov OB. Soy Phys JETP 5, 1192 (1957)Google Scholar
  25. 25.
    Abrahamson AA, Hatcher RD, Vineyard CH, Interatomic repulsive potentials as very small and intermediate separations. Phys Rev 121, 159–171 (1961)Google Scholar
  26. 26.
    Abrahamson AA, Born — Mayer-type interatomic potential for neutral ground-state atoms with Z = 2 to Z = 105. Phys Rev 178, 76–79 (1969)Google Scholar
  27. 27.
    Guenther K, Uber die Existenz eines Maximalprinzips als äquivalente Formulierung des Thomas — Fermi 2014; Dirac Modells and das TFDWechselwirkungspotential in Atomen. Ann Phys 14, 296–309 (1964)Google Scholar
  28. 28.
    Kumakhov MA, Komarov FF, Energy Loss and Ion Ranges in Solids, Gordon and Breach Publ. Inc New York (1981)Google Scholar
  29. 29.
    Wedepohl PT. Proc Phys Soc 92, 79 (1967)Google Scholar
  30. 30.
    Guenther K. Kernenergie, 7, 443 (1964)Google Scholar
  31. 31.
    Nikulin VK. Sov Phys Tech Phys 16, 28 (1971), and: Gordon RG, Kim YS. J Chem Phys 56, 3122 (1972)Google Scholar
  32. 32.
    Wilson WD, Bisson CL, Inert gases in solids: Interatomic potentials and their influence on rare-gas mobility. Phys Rev B3, 3984–3992 (1971)Google Scholar
  33. 33.
    Lindhard J Nielsen V, Scharff M. Mat Fys Medd Dan Vidensk Selsk 36 10 (1968)Google Scholar
  34. 34.
    Wilson WD, Haggmark LG, Biersack JP, Calculations of nuclear stopping, ranges, and straggling in the low-energy region. Phys Rev 15B, 2458–2468 (1977)Google Scholar
  35. 35.
    Bethe HA. Ann Phys 5, 325 (1930), and: Bethe HA, Jackie RW, Intermediate Quantum Mechanics, 2nd edn Benjamin, New York (1968)Google Scholar
  36. 36.
    Hill KW, Merzbacher E, Polarization in distant Coulomb Collisions of charged particles with atoms. Phys Rev A9, 156–165 (1974)Google Scholar
  37. 37.
    Schiwietz G, Coupled-channel calculation of stopping powers for intermediate-energy light ions penetrating atomic H and He targets. Phys Rev A42, 296–306 (1990)Google Scholar
  38. 38.
    Grande PL, Schiwietz G, Nonperturbative stopping-power calculation for bare and neutral hydrogen incident on He. Phys Rev A47, 1119–1122 (1993), and: Grande PL, Schiwietz G, Energy loss of slow ions: one-band calculations for alkaline metals. Phys Lett A163, 439–446 (1992)Google Scholar
  39. 39.
    Northcliffe LC, Schilling RF. Range and stopping power tables for heavy ions. Nucl Data Tables 7, 233–463 (1970)Google Scholar
  40. 40.
    Andersen HH, Ziegler JF, Hydrogen Stopping Powers and Ranges of Ions in Matter, New York, Pergamon, Vol. 3 (1977)Google Scholar
  41. 41.
    Janni F, At Data Nucl Tables 27, 147 (1982)Google Scholar
  42. 42.
    Lindhard J. Mat Fys Medd Dan Vid Selsk 28, 8 (1954), and Lindhard J, Scharff M, Energy dissipation by ions in the keV region. Phys Rev 124, 128130 (1961)Google Scholar
  43. 43.
    Firsov OB. Sov Phys JETP 9, 1076 (1959)Google Scholar
  44. 44.
    Echenique PM, Nieminen RM, Ritchie RH, Density functional calculation of stopping power of an electron gas for slow ions. Solid State Commun 37, 779–781 (1981), and: Echenique PM, Nieminen RM, Ashley JC, Ritchie RH, Nonlinear stopping power of an electron gas for slow ions. Phys Rev A33, 897–904 (1986)Google Scholar
  45. 45.
    Golser R, Semrad D, Observation of a striking departure from velocity proportionality in low-energy electronic stopping. Phys Rev Lett 66, 1831–1833 (1991)Google Scholar
  46. 46.
    Montenegro EC, Meyerhof WE, Sum rules and electron — electron interaction in two-center scattering. Phys Rev A43, 2289–2293 (1991)Google Scholar
  47. 47.
    Vargas-Aburto C, Cruz SA, Montenegro EC, Mean projected ranges of light ions in solids from a new stopping power equation. Rad Eff 80, 23–34 (1984)Google Scholar
  48. 48.
    Mann A, Brandt W, Material dependence of low-velocity stopping powers. Phys Rev B 24, 4999–5002 (1981)Google Scholar
  49. 49.
    Brandt W, Kitagawa M, Effective stopping-power charges of swift heavy ions in condensed matter. Phys Rev B 25, 5631–5637 (1982)Google Scholar
  50. 50.
    Betz HD, Charge state and charge-changing cross-sections of fast heavy ions penetrating through gases and solid media. Rev Mod. Phys 44, 465–539 (1972)Google Scholar
  51. 51.
    Apel PYu, Schulz A, Spohr R, Trautmann C, Vutsudakis V, Tracks of very heavy ions in polymers, Nucl Instrum Methods B131, 55–63 (1997)Google Scholar
  52. 52.
    for Z2 stopping power oscillations, see, e.g.: Fink D, Biersack JP, Städele M, Tjan K, Cheng VK, Nitrogen depth profiling using the 14N(n,p)14C reaction. Nucl Instrum Methods 218, 171–175 (1983) and: Fink D, Biersack JP, Städele M, Tjan K, Cheng VK, Z2 stopping power oscillations as derived from range measurements. Nucl Instrum Methods 218, 817–820 (1983)Google Scholar
  53. 53.
    Wilson RG, Ion implantation ranges and range straggles in organic polymers and comparison with calculations. J Appl Phys 73, 2215–2219 (1992)Google Scholar
  54. 54.
    Bragg WH, Kleemann R. Phil Mag 10, 318 (1905)Google Scholar
  55. 55.
    Crank I, Nicolson P. Proc Cambridge Philos Soc 43, 1 (1947)Google Scholar
  56. 56.
    Ziegler JF, Manoyan J, The stopping of ions in compounds. Nucl Instrum Methods B35, 215–228 (1988)Google Scholar
  57. 57.
    Sabin JR, Oddenshede J, Theoretical stopping cross sections of C-H, CC, and C=C bonds for swift protons. Nucl Instrum Methods B27, 280–286 (1987)Google Scholar
  58. 58.
    Grande PL Behar M, Biersack JP, Zawislak FC, Range parameters of heavy ions implanted into Be films. Nucl Instrum Methods, B45 689–692 (1991), and references thereinGoogle Scholar
  59. 59.
    Grande PL, Behar M, Fink D, Zawislak F Range parameters study of medium-heavy ions implanted into light substrates. Nucl Instrum Methods B61, 282–290 (1992)Google Scholar
  60. 60.
    Fichtner PFP Behar M, Fink D, Goppelt P, Grande PL, Range parameters study of Pb and Au implanted into SiC films. Nucl Instrum Methods B64 668–671 (1992)Google Scholar
  61. 61.
    Perez A, Döbeli M, Synal HA, Measurements of point defect creation related to high densities of electronic excitations produced by energetic carbon cluster bombardments. Nucl Instrum Methods B88, 25–28 (1994)Google Scholar
  62. 62.
    Aoki T, Seki T, Tanomura M, Matsuo J, Insepov Z, Yamada I, Molecular Dynamics simulation of fullerene cluster ion impact. In: Atomistic mechanisms in Ion Beam synthesis and irradiation of materials. Mater Res Soc Symp Proc, Vol. 504 (Barbour JC, Roorda S, Ila D et al. (eds.)), pp. 81–86 (1999)Google Scholar
  63. 63.
    Baudin K, Brunelle A, Chabot M, Della-Negra S, Depauw J, Gardes D, Hakansson P, Le Beyec Y, Billebaud A, Fallavier M, Remillieux J, Poizat JC, Thomas JP, Energy loss by MeV carbon clusters and fullerene ions in solids. Nucl Instrum Methods B94, 341–344 (1994)Google Scholar
  64. 64.
    Tombrello TA, Distribution of damage along an MeV ion track. Nucl Instrum Methods B83, 508–512 (1993)Google Scholar
  65. 65.
    Perez A, Döbeli M, Synal HA, MeV cluster impacts and related phenomena. Nucl Instrum Methods B116, 13–17 (1996)Google Scholar
  66. 66.
    Chu WK, Calculation of energy straggling for protons and helium ions. Phys Rev A13, 2057–2060 (1976)Google Scholar
  67. 67.
    Biersack JP, Basic aspects of high energy implantation. Nucl Instrum Methods B35, 205–214 (1988)Google Scholar
  68. 68.
    Biersack JP, Ernst E, Monge A, Roth S, Tables of electronic and nuclear stopping powers, and energy strggling for low energy ions. HMI-B175 (1975)Google Scholar
  69. 69.
    Behar M Fichtner PFP Olivieri CA, de Souza JP, Zawislak FC, Biersack JP, Fink D, Städele M, Range profiles of 10 to 380 keV 120Sn and 133Cs in amorphous silicon. Rad Eff 90, 103–110 (1985)Google Scholar
  70. 70.
    Behar M, Biersack JP, Fichtner PFP, de B. Leite Filho CV, Fink D, Olivieri CA, de Souza JP, Zawislak FC, Range and range straggling of 15 to 350 keV 69Ga in amorphous silicon. Rad Eff Lett 85, 117–122 (1984)Google Scholar
  71. 71.
    Fichtner PFP, Behar M, Olivieri CA, Livi,RP de Souza JP, Zawislak FC, Fink D, Biersack JP, Large Zi-range effect for Eu, Yb, and Au ions implanted in amorphized silicon. Radiat Eff 87, 191–195 (1986)Google Scholar
  72. 72.
    Littmark U, Ziegler JF, Ranges of energetic ions in matter. Phys Rev 23 A, 64–72 (1981)Google Scholar
  73. 73.
    Lindhard J, Scharff M, Kgl Danske Vid Selsk, Mater Fys Medd 15, 27 (1953)Google Scholar
  74. 74.
    Lindhard J, Nielsen V, Scharff M, Thomsen PV, Danske Vid Selskab, Mater Fys. Medd 33, no. 10 (1963)Google Scholar
  75. 75.
    Littmark U, Ziegler JF, Handbook of Range Distributions for Energetic Ions in All Elements, Vol. 6. Pergamon Press, New York (1980)Google Scholar
  76. 76.
    Ziegler JF, Handbook of Stopping Cross Sections for Energetic Ions in All Elements. Pergamon Press, 1980Google Scholar
  77. 77.
    Biersack JP, Ranges of recoil atoms in isotropic stopping media. Z Phys 211, 495–501 (1968)Google Scholar
  78. 78.
    Biersack JP, Ziegler JF, Ion Implantation Techniques. (H. Ryssel and H. Glawischnig (eds.)), Springer-Verlag Berlin und Heidelberg, 1982Google Scholar
  79. 79.
    Ashworth DG, Bowyer MDJ, Oven R, A revised version of PRAL — the projected range algorithm. J Phys D Appl Phys 240, 1376–1380 (1991)Google Scholar
  80. 80.
    Liang JH, Projected range and range straggling of ion-implanted lead in polystyrene materials. Appl Phys A64, 403–405 (1997)Google Scholar
  81. 81.
    Krause U, Wedell R, Critical remarks on the paper: New Projected Range Algorithm as derived from Transport Equations by J.P. Biersack, Z Phys A327, 1–4 (1982)Google Scholar
  82. 82.
    Biersack JP, Rapid calculatiuons of high energy range distributions. Radiat Eff Def Sol 110, 161–165 (1989)Google Scholar
  83. 83.
    Kahn H, “Applications of the Monte Carlo”, US Atomic Energy Commission, April 1954, Rand Corp., Santa Monica, Cal. AECU-3259 PhysicsGoogle Scholar
  84. 84.
    Robinson MT, Torrens IM, Computer simulation of atomic displacement cascades in solids in the binary-collision approximation. Phys Rev B9, 5008–5024 (1974)Google Scholar
  85. 85.
    Biersack JP, Haggmark LG, The transport and ranges in matter. Nucl In-strum Methods 174, 257–269 (1980)Google Scholar
  86. 86.
    Biersack JP, Ion Beam Modifications of Insulators, Chap. I. ( P. Mazzoldi and G.W. Arnold (eds.) ), Elsevier Publ. Corp., 1987Google Scholar
  87. 87.
    Ziegler JF, Biersack JP, Littmark U, Proceedings of the US — Japan Seminar on Charged Particle Penetration Phenomena, ORNL report CONF-820131, 1982, p. 88Google Scholar
  88. 88.
    For a recent example, see: Hill DJT, Milne KA, O’Donell JH, Pomery PJ, A recent advance in the determination of scission and cross-linking yields of gamma-ray irradiated polymers. In: Irradiation of Polymers: Fundamentals and technological applications, (RL Clough and SW Shalaby (eds.)), Am Chem Soc Symposium series 620, Washington, USA, 1996Google Scholar
  89. 89.
    Paul H, Schinner A, Judging the reliability of stopping power tables and programs for heavy ions. Presented at the 5th Intl. Symposium on “Swift Heavy Ions in Matter”, May 22–25, 2002, Giardini Naxos, ItalyGoogle Scholar
  90. 90.
    Ziegler JF (2001) SRIM, version 2000.40, Google Scholar
  91. 91.
    Grande PL, Schiwietz G, Program CaSP, http://www. schiwietz/ casp. html (2000/2001)Google Scholar
  92. 92.
    Sigmund P, Schinner A, Program BT, Nucl Instrum Methods B, in press (STOP01 issue) (2002)Google Scholar
  93. 93.
    Paul H, Schinner A, Program MSTAR, (2001);Google Scholar
  94. Paul H, Schinner A, An empirical approach to the stopping powqer of solids and gases for ions from 3Li to 18Ar. Nucl Instrum Methods B179, 299–315 (2001), and: Paul H, Schinner A, Judging the reliability of stopping power tables for heavy ions (2002), presented at the 5th Intl. Symposium on “Swift Heavy Ions in Matter”, May 22–25, 2002, Giardini Naxos, ItalyGoogle Scholar
  95. 94.
    Adesida I, Karapiperis L, The range of light ions in polymeric resists. J Appl Phys 56, 1801–1807 (1984)Google Scholar
  96. 95.
    Tennant DM, Dayem AH, Howard RE, Westerwick EH, Range of boron ions in polymers: a SIMS study. J Vac Sci Technol B3, 458–461 (1985)Google Scholar
  97. 96.
    Calcagno L, Foti G, Ion irradiation of polymers. Nucl Instrum Methods B59/60 1153–1158 (1991), and references thereinGoogle Scholar
  98. 97.
    Fink D, Biersack JP, Chen JT, Städele M, Tjan K, Behar M, Olivieri CA, Zawislak FC, Distributions of light ions and foil destruction after irradiation of organic polymers. J Appl Phys 58, 68–676 (1985)Google Scholar
  99. 98.
    Guimaräes RB, Amaral L, Behar M, Fichtner PFP, Zawislak FC, Fink D, Implanted boron depth profiles in the AZ111 photoresist. J Appl Phys 63, 20832013; 2085 (1988)Google Scholar
  100. 99.
    Guimarâes RB, Amaral L, Behar M, Fink D, Zawislak FC, Depth profiles of Li ions implanted into the photoresist AZ111. J Mater Res 3, 1422–1426 (1988)Google Scholar
  101. 100.
    Hnatowicz V, Havranek V, Kvitek J, Perina V, Svorcik V, Rybka V, Modifications of polypropylene induced by the implantation of iodine ions. Jpn J Appl Phys 32, 1810–1813 (1993)Google Scholar
  102. 101.
    Apel PYu, Schulz A, Spohr R, Trautmann C, Vutsadakis V, Track size and track structure in polymer irradiated by heavy ions. Nucl Instrum Methods B146, 468–474 (1998)Google Scholar
  103. 102.
    Trautmann C, Untersuchungen von Spuren hochenergetischer Ionen in Festkörpern (in German). PhD. Thesis Univ. Frankfurt/Main, 1994Google Scholar
  104. 103.
    Esser M, Lösungsmittel-induzierte Delegation molekularer Sonden in latenten Kernspuren and ihre photophysikalische Analyse (in German). PhD. Thesis, Technical University Clausthal, Germany (1996)Google Scholar
  105. 104.
    Bacmeister GU, Diplomarbeit, Univ. Kiel, 1994 (in German, unpublished), and personal communications 1995Google Scholar
  106. 105.
    See, e.g., Kulshreshta A, Laldawngliana C, Mishra R, Ghosh S, Dwivedi KK, Brandt R, Fink D, Energy losses and mean ranges of 129Xe ions in mica and makrofol-KG. Radiat Eff Defects Solids 147, 151–164 (1999)Google Scholar
  107. 106.
    Geisel H, Untersuchungen zur Abbremsung von Schwerionen in Materie im Energiebereich von (0.5–10) MeV/u. PhD. Thesis, Justus-Liebig-Universität Gießen (1982) (in German), and: GSI-Report 12–82, 107 ( 1982 ) Darmstadt, GermanyGoogle Scholar
  108. 107.
    Zhao Q-T, Wang K-M, Liu J-T, Liu X-D, Deng S-M, Lin J, Yao K-J, Range profiles of implanted argon ions in polymers. Radiat Eff Defects Solids 128, 287–293 (1994)Google Scholar
  109. 108.
    Sigmund P, A note on integral equations of the Kinchin-Pease type. Radiat Eff 1, 15–18 (1969)Google Scholar
  110. 109.
    Norgett MJ, Torrens MT, A proposed method of calculating displacement dose rates. Nucl Eng Des 33, 50–54 (1974)Google Scholar
  111. 110.
    Magee JL Chatterjee A, Theoretical aspects of radiation chemistry. In: Radiation Chemistry, Farhataziz and Michael, A. (eds.), VCH Publ., pp. 137–171Google Scholar
  112. 111.
    Vacík J, Cervenâ J, Fink D, Klett R, Hnatowicz V, Popok V, Odzhaev V, High fluence boron implantation into polymers. Radiat Eff Defects Solids 143, 139–156 (1997). and: Popok VN, Khaibullin RI, Bazarov VV, Valeev VF, Hnatowicz V, Machkova A, Odzhaev VB (2001), Anomalous depth distribution of Fe+ and Co+ ions in polyimide under high fluence implantation, 11th Intl. Conf. on Radiation Effects in Insulators, Lisbon, Sept. 3–7, 2001Google Scholar
  113. 112.
    Fink D, Chadderton LT, Hosoi F, Omichi H, Schmoldt A, Depth distribution of infrared absorption of ion-irradiated PETP. Radiat Eff Defects Solids 133, 121–131 (1995)Google Scholar
  114. 113.
    Soares MRF, Fink D, Müller M, Behar M, 1°B+ Ion Implantation into Photoresist; to be submitted to Appl Phys A (2003)Google Scholar
  115. 114.
    Fink D, Müller M, Stettner U, Behar M, Fichtner P, Zawislak FC, Koul S, Non-regular depth profiles of light ions implanted into organic polymer films. Nucl Instrum Methods B2, 150–154 (1988)Google Scholar
  116. 115.
    Fink D, Müller M, Ghosh S, Hnatowicz V, Vacík J, Tomographic study of the three-dimensional distribution of a high-fluence implant in a polymer. Appl Phys A68, 429–434 (1999)Google Scholar
  117. 116.
    Fink D, Müller M, Petrov A, Klett R, Palmetshofer L, Klett R, Palmetshofer L, Hnatowicz V, Vacík J, Cervenâ J, Chadderton LT, Aqueous marker penetration into ion-irradiated polyimide. Nucl Instrum Methods B191, 662–668 (2002)Google Scholar
  118. 117.
    Fink D, Müller M, Klett R, Vacík J, Hnatowicz V, Cervenâ J, Three-dimensional implantation distribution of lithium implanted into pyrographite, as revealed by solid state tomography in combination with neutron depth profiling. Nucl Instr Meth B103, 423–428 (1995)Google Scholar
  119. 118.
    Fink D, Chung WH, Klett R, Döbeli M, Synal HA, Chadderton LT, Wang L, On the dyeing of ion tracks in polymers. Nucl Instrum Methods B108, 377–384 (1995)Google Scholar
  120. 119.
    Fink D, Müller M, Ghosh S, Hnatowicz V, Vacík J, Tomographic study of the three-dimensional distribution of a high-fluence implant in a polymer. Appl Phys A68, 87–91 (1999)Google Scholar
  121. 120.
    Fink D, Klett R, Chung WH, Grünwald R, Döbeli M, Ames F, Chadderton LT, Vacík J, Hnatowicz V, Doping of C,;+ (n = 1, 3, 5, 8) cluster ion tracks in polyimide. Radiat Eff Defects Solids 140, 3–20 (1996)Google Scholar
  122. 121.
    Fink D, Chadderton LT, Cruz SA, Fahrner WR, Hnatowicz V, Te Kaat EH, Melnikov AA, Varichenko VS, Zaitsev AM, Ion track doping. Radiat Eff Defects Solids 132, 81–90 (1994)Google Scholar
  123. 122.
    Klett R, “Charakterisierung von hochenergetischen Schwerionenspuren in Polyimid”, PhD. Thesis, Humboldt-University, Berlin 1996 (in German)Google Scholar
  124. 123.
    Krause-Rehberg R, Bondarenko V, Redmann F, Börner F, Proc. 2nd Intl. Symp. On material chemistry in nuclear environment, Tsukuba, March 1315, 2002Google Scholar
  125. 124.
    Hirata K, Kobayashi Y, Hishita S, Ujihira Y, Damage depth-profiling of Au+ and O+-irradiated amorphous PEEK by monoenergetic positron beams. Appl Phys A64, 491–495 (1997)Google Scholar
  126. 125.
    Hirata K, Kobayashi Y, Hishita S, Saitoh Y, Damage profile of ion-implanted polycarbonate studied using a variable-energy positron beam. Nucl Instrum Methods B164–165, 471–475 (2000)Google Scholar
  127. 126.
    Hirata K, Kobayashi S, Saitoh Y, Hishita S, Correlation between electronic energy deposition and positron annihilation Doppler broadening for ion-implanted polymers. Nucl Instrum Methods B171, 236–239 (2000)Google Scholar
  128. 127.
    Bletos IV, Hercules DM, VanLeyen D, Benninghoven A, Time-of-flight secondary ion mass spectrometry of polymers in the mass range 500–10000. Macromol 20, 407–413 (1987)Google Scholar
  129. 128.
    Koul SL, Campbell LD, Chadderton LT, Langroo M, Fink D, Biersack JP, ESR and track-etch studies of irradiated polymers, Nucl Instrum Methods B32, 383–388 (1988)Google Scholar
  130. 129.
    Sigmund P, Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys Rev 184, 383–416 (1969)Google Scholar
  131. 130.
    see, e.g. Dennis DL, Giedd RE, Wang YQ, Glass GA, Ion beam mixing of metal/fluoropolymer interfaces. 15th AIP Intl. Conf. on the application of accelerators in research and industry; Proc. 415, 792–795 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • M. Behar
  • D. Fink

There are no affiliations available

Personalised recommendations