Skip to main content

Quantum Entanglement: from Popper’s Experiment to Quantum Eraser

  • Conference paper
Frontiers of Laser Physics and Quantum Optics

Abstract

Uncertainty, being perhaps the most basic principle of quantum mechanics, distinguishes the world of quantum phenomena from the realm of classical physics. Quantum entanglement, being perhaps the most surprising consequence of quantum mechanics, on the other hand apparently suggests paradoxes relating to or violations of the quantum mechanical uncertainty principle in some experimental situations. Popper’s experiment and quantum eraser are two examples. Is this a paradox? Are we confronted by a violation of the uncertainty principle? These questions are addressed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev., 47, 777 (1935).

    Article  ADS  MATH  Google Scholar 

  2. K.R. Popper, Zur Kritik der Ungenauigkeisrelationen, Die Naturwissenschaften, 22, Helft, 48, 807 (1934)

    Google Scholar 

  3. K. R. Popper, From the Postscript to the Logic of Scientific Discovery, edited by E.I. Bitsakis and N Tambakis, Gutenberg Publishing, (1984)

    Google Scholar 

  4. K. Popper, Quantum Theory And The Schism In Physics, edited by W.W. Bartly, Hutchinson, London, 28 (1983). Amongst the most notable opponents to the “Copenhagen School” were Einstein-Podolsky-Rosen, de Broglie, Landé, and Karl Popper. One may not agree with Popper’s philosophy (EPR classical reality as well) but once again, Popper’s thought experiment gives yet another way of understanding the foundations of quantum theory.

    Google Scholar 

  5. M.O. Scully and K. Drühl, Phys. Rev. A 25, 2208 (1982).

    Article  ADS  Google Scholar 

  6. The use of a “point source” in the original Popper’s proposal has been criticized. The basic argument is that a point source can never produce a pair of entangled particles which preserves two-particle momentum conservation. However, a “point source” is not a necessary requirement for Popper’s experiment. What we need is to learn the precise knowledge of a particle’s position through quantum entanglement. This is achieved in our experiment by the “ghost image”.

    Google Scholar 

  7. D.N. Klyshko, Photon and Nonlinear Optics, Gordon and Breach Science, New York, (1988).

    Google Scholar 

  8. A. Yariv, Quantum Electronics, John Wiley and Sons, New York, (1989).

    Google Scholar 

  9. T.B. Pittman, Y.H. Shih, D.V. Strekalov, and A.V. Sergienke, Phys. Rev. A, 52, R3429 (1995).

    Article  ADS  Google Scholar 

  10. R.P. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. III, ( Addison-Wesley, Reading, Massachusetts, 1965 ).

    MATH  Google Scholar 

  11. For criticisms of Popper’s experiment, see for example, D. Bedford and F. Selleri, Lettere al Nuovo Cimento, 42, 325 (1985)

    Article  Google Scholar 

  12. M.J. Collett and R. Loudon, Nature, 326, 671 (1987)

    Article  ADS  Google Scholar 

  13. A. Sudbery, Philosophy of Science, 52, 470 (1985).

    Article  MathSciNet  Google Scholar 

  14. M. Horne, Experimental Metaphysics, ed. R.S. Cohen, M. Home, and J. Stachel, Kluwer Academic, 109 (1997).

    Google Scholar 

  15. In type-I SPDC, signal and idler are both ordinary rays of the crystal; however, in type-II SPDC the signal and idler are orthogonal polarized, i.e., one is the ordinary ray and the other is the extraordinary ray of the crystal.

    Google Scholar 

  16. M.H. Rubin, D.N. Klyshko, and Y.H. Shih, Phys. Rev. A 50, 5122 (1994).

    Article  ADS  Google Scholar 

  17. D. Bohm, Quantum Theory, Prentice Hall Inc., New York, (1951).

    Google Scholar 

  18. E.Schrödinger, Naturwissenschaften 23, 807, 823, 844 (1935)

    Article  Google Scholar 

  19. J.A. Wheeler and W.H. Zurek, Princeton University Press, New York, (1983).

    Google Scholar 

  20. Y.H. Shih, A.V. Sergienko, and M.H. Rubin, Phys. Rev. A, 50, 23 (1994).

    Article  ADS  Google Scholar 

  21. N. Bohr, Naturwissenschaften, 16, 245 (1928).

    Article  ADS  MATH  Google Scholar 

  22. See Wheeler’s “delayed choice”, in Quantum Theory and Measurement,edited by J.A. Wheeler and W.H. Zurek, Princeton Univ. Press (1983).

    Google Scholar 

  23. A.G. Zajonc et al.,Nature, 353, 507 (1991)

    Article  ADS  Google Scholar 

  24. P.G. Kwiat et al.,Phys. Rev. A 49, 61 (1994)

    Article  ADS  Google Scholar 

  25. T.J. Herzog et al.,Phys. Rev. Lett., 75, 3034 (1995)

    Article  ADS  Google Scholar 

  26. T.B. Pittman et al.,Phys. Rev. Lett., 77, 1917 (1996).

    Article  ADS  Google Scholar 

  27. C.O. Alley, O.G. Jakubowicz, and W.C. Wickes, Proceedings of the 2nd International Symposium on Foundations of Quantum Mechanics, Tokyo 1986, M. Namiki, et al. (eds.), Kokubunji, Tokyo, Japan: Physical Society of Japan (1987)

    Google Scholar 

  28. T. Hellmuth, H. Walther, A. Zajonc, and W. Schleich, Phys. Rev. A 35, 2532 (1987).

    Article  ADS  Google Scholar 

  29. R.J. Glauber, Phys. Rev. 130, 2529 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  30. R.J. Glauber, Phys. Rev. 131, 2766 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  31. M.O. Scully and M.S. Zubairy, Quantum Optics, Cambridge Univ. Press, Cambridge, UK (1997).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shih, Y., Kim, YH. (2000). Quantum Entanglement: from Popper’s Experiment to Quantum Eraser. In: Xu, Z., Xie, S., Zhu, SY., Scully, M.O. (eds) Frontiers of Laser Physics and Quantum Optics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07313-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07313-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08644-1

  • Online ISBN: 978-3-662-07313-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics