Skip to main content

Abstract

In this paper recent experiments performed in our laboratory are reviewed dealing with the investigation of quantum phenomena in the radiation interaction of single atoms. The first part describes experiments in single mode cavities using the one-atom maser or micromaser and in the second part experiments with ion traps are summarized. The latter experiments concentrate on the investigation of resonance fluorescence. In addition new experimental proposals using ultracold atoms in cavities and traps are discussed. In those future experiments the interplay between atomic waves and light waves is important leading to new phenomena in radiation-atom interaction such as the modification of the Rabi vacuum splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Meschede, H. Walther, and G. Müller: The one-atom maser. Phys. Rev. Lett. 54, 551–554 (1985)

    Article  ADS  Google Scholar 

  2. G. Rempe, H. Walther, and N. Klein: Observation of quantum collapse and revival in the one-atom maser. Phys. Rev. Lett. 58, 353–356 (1987)

    Article  ADS  Google Scholar 

  3. G. Rempe, F. Schmidt-Kaler, and H. Walther: Observation of sub-Poissonian photon statistics in a micromaser. Phys. Rev. Lett. 64, 2783–2786 (1990)

    Article  ADS  Google Scholar 

  4. G. Rempe and H. Walther: Sub-Poissonian atomic statistics in a micromaser. Phys. Rev. A 42, 1650–1655 (1990)

    Article  ADS  Google Scholar 

  5. H.J. Kimble, O. Carnal, N. Georgiades, H. Mabuchi, E.S. Polzik, R.J. Thompson, and Q.A. Turchette: Quantum optics with strong coupling. In: Atomic Physics, D.J. Wineland, C.E. Wieman, S.J. Smith (Eds.), Vol. 14 ( American Insitute of Physics, New York 1995 ) pp. 314–335

    Google Scholar 

  6. K. An, J.J. Childs, R.R. Dasari, M.S. Feld: Microlaser: a laser with one atom in an optical resonator. Phys. Rev. Lett. 73, 3375–3378 (1994)

    Article  ADS  Google Scholar 

  7. C. Wagner, R.J. Brecha, A. Schenzle, and H. Walther: Phase diffusion, entangled states and quantum measurements in the micromaser. Phys. Rev. A 47, 50685079 (1993)

    Google Scholar 

  8. M. Löffler, B.-G. Englert, and H. Walther: Testing a Bell-type inequality with a micromaser. Appl. Phys. B 63, 511–516 (1996)

    Article  ADS  Google Scholar 

  9. O. Benson, G. Raithel, and H. Walther: Quantum jumps of the micromaser field — dynamic behavior close to phase transition points. Phys. Rev. Lett. 72, 3506–3509 (1994)

    Article  ADS  Google Scholar 

  10. G. Raithel, O. Benson, and H. Walther: Atomic interferometry with the micro-maser. Phys. Rev. Lett. 75, 3446–3449 (1995)

    Article  ADS  Google Scholar 

  11. G. Raithel, C. Wagner, H. Walther, L.M. Narducci, and M.O. Scully: The micromaser: a proving ground for quantum physics. In: Advances in Atomic, Molecular, and Optical Physics, Supplement 2, P. Berman (Ed.) ( Academic Press, New York 1994 ) pp. 57–121

    Google Scholar 

  12. P. Filipowicz, J. Javanainen, and P. Meystre: Theory of a microscopic maser Phys. Rev. A 34, 3077–3087 (1986)

    Article  Google Scholar 

  13. L.A. Lugiato, M.O. Scully, and H. Walther: Connection between microscopic and macroscopic maser theory. Phys. Rev. A 36, 740–743 (1987)

    Article  ADS  Google Scholar 

  14. P. Meystre: Cavity quantum optics and the quantum measurement process. In: Progress in Optics, Vol. 30, E. Wolf (Ed.) (Elsevier Science Publishers, New York 1992 ) pp. 261–355

    Google Scholar 

  15. J.M. Raimond, M. Brune, L. Davidovich, P. Goy, and S. Haroche: The two-photon Rydberg atom micromaser Atomic Physics 11, 441–445 (1989)

    Google Scholar 

  16. N.F.Ramsey, In: Molecular Beams ( Clarendon Press, Oxford 1956 ) pp. 124–134

    Google Scholar 

  17. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg: In: Atom-Photon Interactions (John Wiley and Sons, Inc., New York 1992 ) pp. 407–514

    Google Scholar 

  18. C. Wagner, A. Schenzle, and H. Walther: Atomic waiting-times and correlation functions. Optics Communications 107, 318–326 (1994)

    Article  ADS  Google Scholar 

  19. H. Walther: Experiments on cavity quantum electrodynamics. Phys. Reports 219, 263–281 (1992)

    Article  ADS  Google Scholar 

  20. B.-G. Englert, M. Löffler, O. Benson, B. Varcoe, M. Weidinger, and H. Walther: Entangled atoms in micromaser physics. Fortschritte der Physik 46, 897–926 (1998)

    Article  ADS  Google Scholar 

  21. H.J. Briegel, B.-G. Englert, N. Sterpi, and H. Walther: One-atom maser: statistics of detector clicks. Phys. Rev. A 49, 2962–2985 (1994)

    Article  ADS  Google Scholar 

  22. P. Meystre, G. Rempe, and H. Walther: Very-low temperature behavior of a micromaser. Opt. Lett. 13, 1078–1080 (1988)

    Article  ADS  Google Scholar 

  23. M. Weidinger, B.T.H. Varcoe, R. Heerlein, and H. Walther: Trapping states in the micromaser. Phys. Rev. Lett. 82, 3795–3798 (1999)

    Article  ADS  Google Scholar 

  24. J. Krause, M.O. Scully, and H. Walther: State reduction and I n)-state preparation of a high-Q micromaser Phys. Rev. A. 36, 4547–4550 (1987)

    Article  Google Scholar 

  25. P. J. Bardoff, E. Mayr, and W.P. Schleich: Quantum state endoscopy: measurement of the quantum state in a cavity. Phys. Rev. A. 51, 4963–4966 (1995)

    Article  ADS  Google Scholar 

  26. B.T.H. Varcoe, S. Brattke, M. Weidinger, and H. Walther, Nature in print

    Google Scholar 

  27. M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J M Raimond, and S. Haroche: Quantum Rabi oscillation: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800–1803 (1996)

    Article  ADS  MATH  Google Scholar 

  28. D. M. Greenberger, M. Horne, and A. Zeilinger: In Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, M. Kafatos, (Ed.) ( Kluwer, Dordrecht 1989 )

    Google Scholar 

  29. D.M. Greenberger, M. Horne, M. Shimony, and A. Zeilinger: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  30. B.-G. Englert, N. Sterpi, and H. Walther: Parity states in the one-atom maser. Opt. Commun. 100, 526–535 (1993)

    Article  ADS  Google Scholar 

  31. N.D. Mermin• What’s wrong with these elements of reality. Physics Today, 43 (6), 9–11 (1990)

    Article  Google Scholar 

  32. M.O. Scully, G.M. Meyer, and H. Walther: Induced emission due to the quantized motion of ultra-cold atoms passing through a micromaser cavity. Phys. Rev. Lett. 76, 4144–4147 (1996)

    Article  ADS  Google Scholar 

  33. G.M. Meyer, M.O. Scully, and H. Walther: Quantum theory of the mazer: I. General theory. Phys. Rev. A 56, 4142–4152 (1997)

    Article  ADS  Google Scholar 

  34. M. Löffler, G.M. Meyer, M. Schröder, M.O Scully, and H. Walther: Quantum theory of the mazer: II. Extensions and experimental conditions. Phys. Rev. A 56, 4153–4163 (1997)

    Article  ADS  Google Scholar 

  35. M. Schrader, K. Vogel, W.P. Schleich, M.O. Scully, and H. Walther: Quantum theory of the mazer: III. Spectrum. Phys. Rev. A 57, 4164–4174 (1997)

    Article  ADS  Google Scholar 

  36. W. Hartig, W. Rasmussen, R. Schieder, and H. Walther: Study of the frequency distribution of the fluorescent light induced by monochromatic excitation. Z. Physik A 278, 205–210 (1976)

    Article  ADS  Google Scholar 

  37. J.D.Cresser, J. Häger, G. Leuchs, F.M. Rateike, and H. Walther: Resonance fluorescence of atoms in strong monochromatic laser fields. Topics in Current Physics 27, 21–59 (1982)

    Article  Google Scholar 

  38. P.S. Jessen, C. Gerz, P.D. Lett, W.D. Philipps, S.L. Rolston, R.J.C. Spreuuw, and C.I. Westbrook: Observation of quantized motion of Rb atoms in an optical field. Phys. Rev. Lett. 69, 49–52 (1992)

    Article  ADS  Google Scholar 

  39. W. Heitler: In: The Quantum Theory of Radiation, Third Edition ( University Press, Oxford 1954 ) pp. 196–204

    Google Scholar 

  40. B.R. Mollow: Power spectrum of light scattered by two-level systems. Phys. Rev. 188, 1969–1975 (1969)

    Article  ADS  Google Scholar 

  41. F. Schuda, C. Stroud, Jr., and M. Hercher: Observation of the resonant Stark effect at optical frequencies. J. Phys. B 1, L198 — L202 (1974)

    Article  Google Scholar 

  42. H. Walther: Atomic fluorescence induced by monochromatic excitation. Lecture Notes in Physics 43, 358–369 (1975)

    Article  ADS  Google Scholar 

  43. F.Y. Wu, R.E. Grove, and S. Ezekiel: Investigation of the spectrum of resonance fluorescence induced by a monochromatic field. Phys. Rev. Lett. 35, 1426–1429 (1975); R.E. Grove, F.Y. Wu, and S. Ezekiel: Measurement of the spectrum of resonance fluorescence from a two-level atom in an intense monochromatic field. Phys. Rev. Lett. A 15, 227–233 (1977)

    Google Scholar 

  44. H.M. Gibbs and T.N.C. Venkatesan: Direct observation of fluorescence narrower than the natural linewidth. Opt. Comm. 17, 87–94 (1976)

    Article  ADS  Google Scholar 

  45. H.J. Kimble, M. Dagenais, and L. Mandel: Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977)

    Article  ADS  Google Scholar 

  46. E. Jakeman, E.R. Pike, P.N. Pusey, and J.M. Vaugham: The effect of atomic number fluctuations on photon antibunching in resonance fluorescence. J. Phys. A 10, L257 — L259 (1977)

    Article  ADS  Google Scholar 

  47. H.J. Kimble, M. Dagenais, and L. Mandel: Multiatom and transit-time effects in photon correlation measurements in resonance fluorescence. Phys. Rev. A 18, 201–207 (1978); M. Dagenais and L. Mandel: Investigation of two-atom correlations in photon emissions from a single atom. Phys. Rev. A 18, 22172218 (1978)

    Google Scholar 

  48. F.M. Rateike, G. Leuchs, and H. Walther, results cited in Ref. 27

    Google Scholar 

  49. F. Diedrich and H. Walther: Non-classical radiation of a single stored ion. Phys. Rev. Lett. 58, 203–206 (1987)

    Article  ADS  Google Scholar 

  50. D.F. Walls: Evidence for the quantum nature of light. Nature 280, 451–454 (1979)

    Article  ADS  Google Scholar 

  51. R. Short and L. Mandel: Observation of sub-Poissonian photon statistics. Phys. Rev. Lett. 51, 384–387 (1983)

    Article  ADS  Google Scholar 

  52. C.A. Schrama, E. Peik, W.W. Smith, and H. Walther: Novel miniature ion traps. Opt. Comm. 101, 32–36 (1993)

    Article  ADS  Google Scholar 

  53. J.T. Höffges, H.W. Baldauf, T. Eichler, S.R. Helmfrid, and H. Walther: Heterodyne measurement of the fluorescent radiation of a single trapped ion. Opt. Communications 133, 170–174 (1997)

    Article  ADS  Google Scholar 

  54. J.T. Höffges, H.W. Baldauf, W. Lange, and H. Walther: Heterodyne measurement of the resonance fluorescence of a single ion. Journal of Modern Optics 55, 1999–2010 (1997)

    Article  Google Scholar 

  55. R. Loudon: Non-classical effects in the statistical properties of light. Rep. Progr. Phys. 43, 913–949 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  56. Y. Mu and C.M. Savage: One-atom lasers. Phys. Rev. A 46, 5944–5954 (1992)

    Article  ADS  Google Scholar 

  57. C. Ginzel, H.J. Briegel, U. Martini, B.-G. Englert, and A. Schenzle: Quantum optical master equations: the one-atom laser. Phys. Rev. A 48, 732–738 (1993)

    Article  ADS  Google Scholar 

  58. T. Pellizzari and H.J. Ritsch: Photon statistics of the three-level one-atom laser. Mod. Opt. 41, 609–623 (1994); Preparation of stationary Fock states in a one-atom Raman laser. Phys. Rev. Lett. 72, 3973–3976 (1994); P. Horak, K.M. Gheri, and H. Ritsch: Quantum dynamics of a single-atom cascade laser. Phys. Rev. A 51, 3257–3266 (1995)

    Google Scholar 

  59. H.-J. Briegel, G.M. Meyer, and B.-G. Englert: Dynamic noise reduction in multilevel lasers: nonlinear theory and the pump-operator approach. Phys. Rev. A 53, 1143–1159 (1996); Pump operator for lasers with multi-level excitation. Europhys. Lett. 33, 515–520 (1996)

    ADS  Google Scholar 

  60. For a recent review see E. Arimondo: Coherent population trapping in laser spectroscopy. In: Progress in Optics, vol. XXXV, E. Wolf (Ed.) ( Elsevier, Amsterdam 1996 ) pp. 257–354

    Google Scholar 

  61. A.M. Khazanov, G.A. Koganov, and E.P. Gordov: Macroscopic squeezing in three-level laser. Phys. Rev. A 42, 3065–3069 (1990); T.C. Ralph and C.M. Savage: Squeezed light from a coherently pumped four-level laser. Phys. Rev. A 44, 7809–7814, (1991); H. Ritsch, P. Zoller, C.W. Gardiner, and D.F. Walls: Laser light by dynamic pump-noise suppression. Phys. Rev. A 44, 3361–3364 (1991)

    Google Scholar 

  62. K.M. Gheri and D.F. Walls: Squeezed lasing without inversion or light amplification by coherence. Phys. Rev. A 45, 6675–6686 (1992); H. Ritsch and M.A.M. Marte: Quantum noise in Raman lasers: effects of pump bandwidth and super-and sub-Poissonian pumping. Phys. Rev. A 47, 2354–2365 (1993)

    Google Scholar 

  63. G.M. Meyer, H.-J. Briegel, and H. Walther: Ion-trap laser. Europhys. Lett. 37, 317–322 (1997)

    Article  ADS  Google Scholar 

  64. G.M. Meyer, M. Löffler, and H. Walther: Spectrum of the ion-trap laser. Phys. Rev. A 56, R1099 — R1102 (1997)

    Article  ADS  Google Scholar 

  65. M. Löffler, G.M. Meyer, and H. Walther: One atom laser with quantized centreof-mass motion. Europhys. Lett. 40, 263–268 (1997)

    Article  ADS  Google Scholar 

  66. M. Löffler, G.M. Meyer, and H. Walther: Spectral properties of the one-atom maser Phys. Rev. A 55, 3923–3930 (1997)

    Article  Google Scholar 

  67. M. Löffler and H. Walther: Velocity selection for ultracold atoms using a micromaser. Europhys. Lett. 41, 593–598 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Walther, H. (2000). Single Atom Masers and Lasers. In: Xu, Z., Xie, S., Zhu, SY., Scully, M.O. (eds) Frontiers of Laser Physics and Quantum Optics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07313-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07313-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08644-1

  • Online ISBN: 978-3-662-07313-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics