Skip to main content

Excess Quantum Noise in Nonnormal Oscillators

  • Conference paper

Abstract

The eigenmodes or “normal modes” of many common laser cavities are in fact eigensolutions of nonhermitian or non-self-adjoint operators, and this unfamiliar circumstance leads to distinctly “nonnormal” behavior for such lasers. Elementary examples include the transverse modes in gain-guided diode lasers and geometrically unstable optical resonators, the longitudinal modes in lasers with large output coupling at one end, and the polarization modes of twisted birefringent cavities. The modes of these systems are all nonorthogonal in the usual power-orthogonal or energy-orthogonal sense, and as a consequence many of the conventional conclusions of classical and quantum noise theory must be substantially modified. Laser oscillators having nonnormal cavity modes are subject in particular to a so-called Petermann excess noise factor or a large excess spontaneous emission per mode. These excess noise properties have been decisively confirmed by observations of greatly increased Schawlow-Townes linewidths in such lasers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. L. Schawlow and C. H. Townes: Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958).

    Article  ADS  Google Scholar 

  2. M. Sargent, III, M. O. Scully, W. E. Lamb, Jr.: Laser Physics. Addison-Wesley Publishing Company (1972).

    Google Scholar 

  3. K. Petermann: Calculated spontaneous emission factor for double heterostructure injection lasers with gain-induced waveguiding. IEEE J. Quantum Electron. QE-15, 566–570 (1979).

    Google Scholar 

  4. H. A. Haus and S. Kawakami: On the excess spontaneous emission factor in gain-guided laser amplifiers. IEEE J. Quantum Electron. QE-21, 63–69 (1985).

    Google Scholar 

  5. A. E. Siegman: Excess spontaneous emission in nonhermitian optical systems. I. Laser amplifiers. II. Laser oscillators. Phys. Rev. A 39, 1253–1268 (1989).

    Google Scholar 

  6. W. A. Hamel and J. P. Woerdman: Nonorthogonality of the longitudinal modes of a laser. Phys. Rev. A 40, 2785–2791 (1989); also W. A. Hamel and J. P. Woerdman: Observation of enhanced fundamental linewidth of a laser due to nonorthogonality of its longitudinal eigenmodes. Phys. Rev. Lett. 64, 1506–1509 (1990).

    Google Scholar 

  7. Y.-J. Cheng, P. L. Mussche, A. E. Siegman: Measurement of laser quantum frequency fluctuations using a Pound-Drever stabilization system. IEEE J. Quantum Electron. QE-30, 1498–1504 (J1994); and Y.-J. Cheng, G. Fanning, A. E. Siegman: Experimental observation of a large excess quantum noise factor in the linewidth of a laser oscillator using nonorthogonal modes. Phys. Rev. Lett. 77, 627–630 (1996).

    Google Scholar 

  8. M. A. van Eijkelenborg, A. M. Lindberg, M. S. Thijssen, J. P. Woerdman. Resonance of quantum noise in an unstable cavity laser. Phys. Rev. Lett. 77, 43144317 (18 November 1996); and M. A. Van Eijkelenburg, A. M. Lindberg, M. S. Thijssen, J. P. Woerdman. Higher order transverse modes of an unstable-cavity laser. IEEE J. Quantum Electron. QE-34, 955–965 (1998).

    Google Scholar 

  9. O. Emile, M. Brunel, F. Bretenaker, A. Le Floch: Direct measurement of the excess noise factor in a geometrically stable laser resonator. Phys. Rev. A 57, 4889–4893 (1998).

    Article  ADS  Google Scholar 

  10. I. H. Deutsch, J. C. Garrison and E. M. Wright: Excess noise in gain-guided amplifiers. J. Opt. Soc. Am. B 8, 1244–1251 (1991).

    Article  ADS  Google Scholar 

  11. P. Goldberg, P. W. Milonni, B. Sundaram: Theory of the fundamental laser linewidth. Phys. Rev. A 44, 1969–1985 (1 August 1991); also P. Goldberg, P. W. Milonni, B. Sundaram: Laser linewidth: amplification of vacuum fluctuations and effects of spatial hole burning. J. Modern Opt. 38, 1421–1427 (1991).

    ADS  Google Scholar 

  12. H. Wenzel and H.-J. Wunsche: An equation for the amplitudes of the modes in semiconductor lasers. IEEE J. Quantum. Electron. QE-30, 2073–2080 (1994).

    Google Scholar 

  13. P. Grangier and J.-P. Poizat: A simple quantum picture for the Petermann excess noise factor. Eur. Phys. J. D 1, 97–104 (1998).

    Article  ADS  Google Scholar 

  14. K. C. Ho, P. T. Leung, A. M. Vandenbrink, K. Young: 2nd quantization of open systems using quasi-normal modes. Phys. Rev. E 58, 2965–2978 (1998).

    Article  ADS  Google Scholar 

  15. C. Lamprecht and H. Ritsch: Quantized atom-field dynamics in unstable cavities. Phys. Rev. Lett. 82, 3787–3790 (1999).

    Article  ADS  Google Scholar 

  16. P. J. Bardroff and S. Stenholm: Quantum theory of excess noise. Private communication (1999).

    Google Scholar 

  17. A. N. van der Lee et al.: Excess quantum noise due to nonorthogonal polarization modes. Phys. Rev. Lett. 79, 4357–4360 (1997).

    Article  ADS  Google Scholar 

  18. O. Emile, M. Brunel, A. Le Floch, F. Bretenaker: Vectorial excess noise factor in common lasers. Europhys. Lett. 43, 153–157 (1998).

    Article  ADS  Google Scholar 

  19. A. E. Siegman: Lasers without photons — or should it be lasers with too many photons? Appl. Phys. B 60, 247–257 (1995).

    Google Scholar 

  20. A. E. Siegman: Lasers Without Photons. In Coherence and Quantum Optics VII, J. H. Eberly, L. Mandel, E. Wolf (Eds.) ( Plenum Press, University of Rochester, New York 1995 ); pp. 229–238.

    Google Scholar 

  21. A. Kostenbauder, Y. Sun, A. E. Siegman: Eigenmode expansions using biorthogonal eigenfunctions: complex-valued Hermite gaussians. J. Opt. Soc. Amer. A 14, 1780–1790 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  22. A. E. Siegman: Nyquist noise formulation for nonhermitian linear systems. Manuscript in preparation (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siegman, A.E. (2000). Excess Quantum Noise in Nonnormal Oscillators. In: Xu, Z., Xie, S., Zhu, SY., Scully, M.O. (eds) Frontiers of Laser Physics and Quantum Optics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07313-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07313-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08644-1

  • Online ISBN: 978-3-662-07313-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics