Skip to main content

Pump-Probe Spectroscopy — Revisited

  • Conference paper
Frontiers of Laser Physics and Quantum Optics
  • 779 Accesses

Abstract

A theory of pump probe spectroscopy is carried out using an amplitude approach in a bare state basis. The interplay between absorption and emission is clearly defined in this approach. Both closed and open systems are considered. The theory is applied to a calculation of the dispersion-like structure that appears when the probe frequency is nearly equal to the pump frequency, in the limit of large pump field detuning. The theory is extended to include a class of problems in which the recoil atoms undergo on the absorption or emission of radiation leads to resonance structures. The relationship of these recoil-induced resonances to the collective atomic recoil laser is discussed. The probe gain which occurs without level inversion in these systems cannot be viewed as a parametric process, in its normal sense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example, G. S. Agarwal and N. Nayak, J. Opt. Soc. Amer. B 1 (1984) 164; H. Friedman and A. P. Wilson-Gordon, Phys. Rev. A 36 (1987) 1333; N. B. Manson, C. Wei, and J. P. D. Martin, Phys. Rev. Lett. 76 (1996) 3943; H. S. Freedhoff and Z. Ficek, Phys. Rev. A 58 (1998) 1296.

    Google Scholar 

  2. B. R. Mollow, Phys. Rev. A 5 (1972) 2217.

    Google Scholar 

  3. Haroche and Hartmann [S. Haroche and F. Hartmann, Phys. Rev. A 6 (1972) 1280] obtained the probe absorption spectrum in the context of velocity-tuned resonances in the theory of saturated absorption. They interpreted the structure centered near 5 = 0 as a competition between the two processes shown in Fig. 3 (a),(b) (which cancel exactly in our model). In the context of the relaxation model used in their paper, their amplitude interpretation does not appear to be justified.

    Google Scholar 

  4. F. Y. Wu, S. Ezekiel, M. Ducloy, and B. R. Mollow, Phys. Rev. Lett. 38 1077 (1977).

    Article  ADS  Google Scholar 

  5. C. Cohen-Tannoudji and S. Reynaud, J. Phys. B 10 (1977) 345.

    Article  ADS  Google Scholar 

  6. G. Khitrova, P. R. Berman, and M. Sargent III J. Opt. Soc. Amer. B 5 (1988) 160; P. R. Berman, V. Finkelstein, and J. Guo, in Laser Spectroscopy X,edited by M. Ducloy, E. Giacobino, and G. Camy (World Scientific, Singapore, 1992) pps. 15–20.

    Google Scholar 

  7. G. Grynberg and C. Cohen-Tannoudji, Optics Comm. 96 (1993) 150.

    Article  ADS  Google Scholar 

  8. P. R. Berman, Phys. Rev. A 53, 2627 (1996).

    ADS  Google Scholar 

  9. J. Guo, P. R. Berman, B. Dubetsky, and G. Grynberg, Phys. Rev. 46, 1426 (1992).

    Article  ADS  Google Scholar 

  10. R. Bonifacio and L. De Salvo, Nucl. Instrum Methods Phys. Res. A 341, 360 (1994).

    Google Scholar 

  11. M. Moore and P. Meystre, Phys. Rev. A 58, 3248 (1998).

    Article  ADS  Google Scholar 

  12. P. R. Berman, Phys. Rev. A 59, 585 (1999).

    Article  ADS  Google Scholar 

  13. It is also possible to carry out the calculations using fields that are turned on adiabatically. The final steady state results are identical, but the contributions from individual diagrams differ for the two approaches.

    Google Scholar 

  14. B. Dubetsky and P. R. Berman, Phys. Rev. A 47 (1993) 1294.

    Google Scholar 

  15. P. R. Berman and G. Khitrova, Opts. Comm, to appear.

    Google Scholar 

  16. D. M. Stamper-Kurn, A. Chikkatur, A. Görlitz, S. Inouye, S. Gupta, D. Pritchard, and W. Ketterle, cond-matter/9906035; Phys. Rev. Lett., to appear.

    Google Scholar 

  17. J. Y. Courtois, G. Grynberg, B. Lounis, and P. Verkerk, Phys. Rev. Lett. 72, 3017 (1994).

    Article  ADS  Google Scholar 

  18. W. E. Lamb, Jr., Phys. Rev. 134, A1429 (1964).

    Article  ADS  Google Scholar 

  19. S. Inouye, A. Chikkatur, D. Stamper-Kurn, J. Stenger, D. Pritchard, and W. Ketterle, Science 285, 571 (1999).

    Article  Google Scholar 

  20. N. Lu and P. R. Berman, Phys. Rev. A 44 (1991) 5965.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berman, P.R. (2000). Pump-Probe Spectroscopy — Revisited. In: Xu, Z., Xie, S., Zhu, SY., Scully, M.O. (eds) Frontiers of Laser Physics and Quantum Optics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07313-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07313-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08644-1

  • Online ISBN: 978-3-662-07313-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics