Advertisement

Noninvasive Imaging in Drug Discovery and Development

  • M. Rudin
  • P. Allegrini
  • N. Beckmann
  • H.-U. Gremlich
  • R. Kneuer
  • D. Laurent
  • M. Rausch
  • M. Stoeckli
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 48)

Abstract

Traditionally, medical imaging is applied to radiological diagnostics, i.e., to characterize a disease phenotype based on morphological or physiological readouts. Criteria determining image quality and, hence, its diagnostic value are spatial resolution and contrast-tonoise ratio (CNR), the ability to discriminate an anatomical structure from its environment. Image contrast is based on the biophysical properties of tissue such as absorption of radiation in X-ray, or proton density and spin relaxation in magnetic resonance imaging (MRI). Structure definition can be enhanced by administration of exogenous contrast agents, which are electron-dense materials for X-ray and para- or superparamagnetic compounds for MRI, the contract enhancement being governed by both the properties of the contrast agent and the tissue microstructure. The dynamic measurement of contrast changes induced by administration of a contrast agent provides information on physiological tissue parameters such as tissue perfusion, vascular permeability, and function of excretory organs. When combining the contrast-enhancing principle (reporter group) with a target-specific carrier moiety (receptor ligand, antibody, cell), specific information on target expression and function can be obtained. Such target-specific or molecular imaging approaches have raised considerable interest both from a diagnostic and therapeutic point-of-view (Rudin and Weissleder 2003). Considering the broad spectrum of applications of modern imaging technologies their increasing impact on drug discovery and development programs is not surprising.

Keywords

Positron Emission Tomography Noninvasive Image Single Photon Emission Computer Tomography NIRF Imaging Positron Emission Tomography Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agdeppa ED, Kepe V, Liu J, Flores-Torres S, Satyamurthy N, Petrie A, Cole GM, Small GW, Huang SC, Barrio JR (2001) Binding characteristics of radiofluorinated 6–dialkylamino-2–naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer’s disease. J Neurosci 21:RC189Google Scholar
  2. Aguayo JB, Blackband SJ, Schoeninger J, Mattingly MA, Hintermann M (1986) MRI of single cells. Nature 322: 190–191PubMedCrossRefGoogle Scholar
  3. Beauregard M, Leroux JM, Bergman S, Arzoumanian Y, Beaudoin G, Bourgouin P, Stip E (1998) The functional neuroanatomy of major depression: an fMRI study using an emotional activation paradigm. NeuroReport 9: 3253–3258PubMedCrossRefGoogle Scholar
  4. Becker A, Hessenius C, Licha K, Ebert B, Sukowski U, Semmler W, Wiedenmann B, Grotzinger C (2001) Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nat Biotechnol 19: 327–331PubMedCrossRefGoogle Scholar
  5. Beckmann N, Hof RP, Rudin M (2000) The role of magnetic resonance imaging and spectroscopy in transplantation: from animal models to man. NMR Biomed 13: 329–348PubMedCrossRefGoogle Scholar
  6. Beckmann N, Mueggler T, Allegrini PR, Laurent D, Rudin M (2001) From anatomy to the target: contributions of magnetic resonance imaging to preclinical pharmaceutical research. Anat Rec 265: 85–100PubMedCrossRefGoogle Scholar
  7. Beckmann N, Cannet C, Fringeli-Tanner M, Baumann D, Pally C, Bruns C, Zerwes HG, Andriambeloson E, Bigaud M (2003) Analysis of a rat model of kidney transplantation by morphological and functional MRI: Search for early markers of allograft chronic rejection. Magn Reson Med 49: 459–467Google Scholar
  8. Benaron DA, Contag PR, Contag CH (1997) Imaging brain structure and function, infection and gene expression in the body using light. Philos Trans R Soc Lond B Biol Sci 352: 755–761PubMedCrossRefGoogle Scholar
  9. Benveniste H, Hedlund LW, Johnson GA (1992) Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy. Stroke 23: 746–754PubMedCrossRefGoogle Scholar
  10. Benveniste H, Einstein G, Kim KR, Hulette C, Johnson GA (1999) Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc Natl Acad Sci USA 96: 14079–14084PubMedCrossRefGoogle Scholar
  11. Birchler M, Neri G, Tarli L, Halin C, Viti F, Neri D (1999) Infrared photo-detection for the in vivo localisation of phage-derived antibodies directed against angiogenic markers. J Immunol Methods 231: 239–244PubMedCrossRefGoogle Scholar
  12. Blankenberg FG, Katsikis PD, Tait JF, Davis RE, Naumovski L, Ohtsuki K, Kopiwoda S, Abrams MJ, Darkes M, Robbins RC, Maecker HT, Strauss HW (1998) In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc Natl Acad Sci USA 95: 6349–6354PubMedCrossRefGoogle Scholar
  13. Bolo NR, Hode Y, Nedelec JF, Laine E, Wagner G, Macher JP (2000) Brain pharmacokinetics and tissue distribution in vivo of fluvoxamine and fluoxetine by fluorine magnetic resonance spectroscopy. Neuropsychopharmacol 23: 428–438CrossRefGoogle Scholar
  14. Botteron KN, Raichle ME, Drevets WC, Heath AC, Todd RD (2002) Volumetric reduction in left subgenual prefrontal cortex in early onset depression. Biol Psychiatry 51: 342–344PubMedCrossRefGoogle Scholar
  15. Brasch R, Pham C, Shames D, Roberts T, van Dijke K, van Bruggen N, Mann J, Ostrowitzki Melnyk 0 (1997) Assessment of tumor angiogenesis using macromolecular MRE imaging contrast media. J Magn Reson Imaging 7: 68–74PubMedCrossRefGoogle Scholar
  16. Bremer C, Tung CH, Weissleder R (2001) In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 7: 743–748PubMedCrossRefGoogle Scholar
  17. Bulte JW, Zhang S, van Gelderen P, Herynek V, Jordan EK, Duncan ID, Frank JA (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 96: 15256–15261PubMedCrossRefGoogle Scholar
  18. Carlsen H, Moskau JO, Fromm SH, Blomhoff R (2002) In vivo imaging of NF-KB activity. J Immunol 168: 1441–1446PubMedGoogle Scholar
  19. Chen J, Tung CH, Mahmood U, Ntziachristos V, Gyurko R, Fishman MC, Huang PL,Weissleder R (2002) In vivo imaging of proteolytic activity in atherosclerosis. Circulation 105: 2766–2771Google Scholar
  20. Chen YCI, Galpern WR, Brownell AL, Matthews RT, Bogdanov M, Isacson O, Keltner JR, Beal MF, Rosen BR, Jenkins BG (1997) Detection of dopaminergic neurotransmitter activity using pharmacologic MRI:correlation with PET, microdialysis and behavioural data. Magn Re-son Med 38: 389–398CrossRefGoogle Scholar
  21. Chevenert TL, McKeever PE, Ross BD (1997) Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 3: 1457–1466Google Scholar
  22. Chevenert TL, Stegman LD, Taylor JMG, Robertson PL, Greenberg HS, Rehemtulla A, Ross BD (2000) Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 92: 2029–2036CrossRefGoogle Scholar
  23. Ciana P, Raviscioni M, Mussi P, Vegeto E, Que I, Parker MM, Lowik C, Maggi A (2003) In-vivo imaging of transcriptionally active estrogen receptors. Nat Med 9: 82–86PubMedCrossRefGoogle Scholar
  24. Clement O, Pradel C, Siauve N, Frouin F, Bruneteau G, Kahn E, Frija G, Cuenod CA (2002) Assessing perfusion and capillary permeability changes induced by a VEGF inhibitor in human tumor xenografts using macromolecular MR imaging contrast media. Acad Radiol 9 (Suppl 2): S328 — S329PubMedCrossRefGoogle Scholar
  25. Cohen SM, Werrmann JG, Rasmusson GH, Tanaka WK, Malatesta PF, Prahalada S, Jacobs JG, Harris G, Nett TM (1995) Comparison of the effects of anew specific azasteroid inhibitor of 5a-reductase on canine hyperplastic prostate. Suppression of prostatic DHT correlated with prostate regression. Prostate 26: 55–72Google Scholar
  26. Contag CH, Spilman SD, Contag PR, Oshiro M, Eames B, Dennery P, Stevenson DK, Benaron DA (1997) Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 66: 523–531PubMedCrossRefGoogle Scholar
  27. Costa GL, Sandora MR, Nakajima A, Nguyen EV, Taylor-Edwards C, Slavin AJ, Contag CH, Fathman CG, Benson JM (2001) Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit. J Immunol 167: 2379–2387PubMedGoogle Scholar
  28. Dousset V, Delalande C, Ballarino L, Quesson B, Seilhan D, Coussemacq M, Thiaudiere E, Brochet B, Canioni P, Caille JM (1999) In-vivo macrophage activity imaging in central nervous system detected by magnetic resonance. Magn Reson Med 41: 329–333PubMedCrossRefGoogle Scholar
  29. Drevs J, Muller-Driver R, Wittig C, Fuxius S, Esser N, Hugenschmidt H, Konerding MA, Allegrini PR, Wood J, Hennig J, Unger C, Marme D (2002) PTK787/ZK 222584, a specific vascular endothelial growth factor-receptor tyrosine kinase inhibitor, affects the anatomy of the tumor vascular bed and the functional vascular properties as detected by dynamic enhanced magnetic resonance imaging. Cancer Res 62: 4015–4022PubMedGoogle Scholar
  30. Duvvuri U, Poptani H, Felman M, Nadal-Desbarats L, Gee MS, Lee WMF, Reddy R, Leigh JS, Glickson JD (2001) Quantitative Tlr magnetic resonance imaging of RIF-1 tumors in-vivo: DETECTION of early response to cyclophosphamide therapy. Cancer Res 61: 7747–7753Google Scholar
  31. Eliceiri BP, Cheresh DA (2001) Adhesion events in angiogenesis. Curr Opin Cell Biol 13 (5): 563–568PubMedCrossRefGoogle Scholar
  32. Evelhoch JL, Gillies RJ, Karczmar GS, Koutcher JA, Maxwell RJ, Nalcioglu O, Raghunand N, Ronen SM, Ross BD, Swartz HM (2000) Applications of magnetic resonance in model systems: cancer therapeutics. Neoplasia 2: 152–165PubMedCrossRefGoogle Scholar
  33. Fischman AJ, Alpert NM, Rubin RH (2002) Pharmacokinetic imaging: a noninvasive method. Clin Pharmacokinet 41: 581–602PubMedCrossRefGoogle Scholar
  34. Furman-Haran E, Margalit R, Grobgeld D, Degani H (1996) Dynamic contrast-enhanced magnetic resonance imaging reveals stress-induced angiogenesis in MCF7 human breast tumors. Proc Natl Acad Sci USA 93: 6247–6251PubMedCrossRefGoogle Scholar
  35. Fuxe K, Ungerstedt U (1976) Antiparkinsonian drugs and dopaminergic neostriatal mechanisms: studies in rats with unilateral 6–hydroxydopamine (6–OH-DA)-induced degeneration of the nigro-neostriatal DA pathway and quantitative recording of rotational behaviour. Pharmacol Ther [B] 2: 41–47Google Scholar
  36. Green LA, Yap CS, Nguyen K, Barrio JR, Namavari M, Satayamurthy N, Phelps ME, Sandgren EP, Hershman HR, Gambhir SS (2002) Indirect monitoring of endogenous gene expression by positron emission tomography ( PET) imaging of reporter gene expression in transgenic mice. Mol Imaging Biol 4: 71–81Google Scholar
  37. Griffiths JR, Glickson JD (2000) Monitoring pharmacokinetics of anticancer drugs: non-invasive investigation using magnetic resonance spectroscopy. Adv Drug Deliv Rev 41: 75–89PubMedCrossRefGoogle Scholar
  38. Haeusler A, Allegrini PR, Biollaz M, Batzl C, Scheidegger E, Bhatnagar AS (1996) CGP 53153: a new potent inhibitor of 5a-reductase. J Steroid Biochem Mol Biol 58: 187–195CrossRefGoogle Scholar
  39. Hoehn M, Kustermann E, Blunk J, Wiedermann D, Trapp T, Wecker S, Focking M, Arnold H, Hescheler J, Fleischmann BK, Schwindt W, Buhrle C (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA 99: 16267–16272PubMedCrossRefGoogle Scholar
  40. Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R, Cheresh DA (2002) Tumor regression by targeted gene delivery to the neovasculature. Science 296: 2404–2407PubMedCrossRefGoogle Scholar
  41. Iyer M, Wu L, Carey M, Wang Y, Smallwood A, Gambhir SS (2001) Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proc Natl Acad Sci USA 98: 1459514600Google Scholar
  42. Kaim A, Wischer T, O’Reilly T, Jundt G, Froehlich J, Von Schulthess GK, Allegrini PR (2002) MR imaging with ultrasmall superparamagnetic iron oxide particles in experimental soft-tissue infections in rats. Radiology 225: 808–814PubMedCrossRefGoogle Scholar
  43. Knopp MV, Weiss E, Sinn HP, Mattern J, Junkermann H, Radeleff J, Magener A, Brix G, Delorme S, Zuna I, van Kaick G (1999) Pathophysiological basis of contrast enhancement in breast tumors. J Magn Reson Imaging 10: 260–266PubMedCrossRefGoogle Scholar
  44. Lalonde R, Dumont M, Staufenbiel M, Sturchler-Pierrat C, Strazielle C (2002) Spatial learning, exploration, anxiety, and motor coordination in female APP23 transgenic mice with the Swedish mutation. Brain Res 956: 36–44PubMedCrossRefGoogle Scholar
  45. Langstrom B, Kihlberg T, Bergstrom M, Antoni G, Bjorkman M, Forngren BH, Forngren T, Hartvig P, Markides K, Yngve U, Ogren M (1999) Compounds labelled with short-lived beta(+)-emitting radionuclides and some applications in life sciences. The importance of time as a parameter. Acta Chem Scand 53: 651–669Google Scholar
  46. Laxman B, Hall DE, Bhojani MS, Hamstra DA, Chevenert TL, Ross BD, Rehemtulla A (2002) Noninvasive real-time imaging of apoptosis. Proc Natl Acad Sci USA 99: 16551–16555PubMedCrossRefGoogle Scholar
  47. Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18: 410–114PubMedCrossRefGoogle Scholar
  48. Li CPK, Bednarski MD (2002) Vascular-targeted molecular imaging using functionalized polymerized vesicles. J Magn Reson Imaging 16: 388–393PubMedCrossRefGoogle Scholar
  49. Li CPK, Guccione S, Bednarski MD (2002) Combined vascular targeted imaging and therapy: A paradigm for personalized treatment. J Cell Biochem (Suppl) 39: 605Google Scholar
  50. Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R, Jacobs RE, Fraser SE, Meade TJ (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18: 321–325PubMedCrossRefGoogle Scholar
  51. Luker GD, Sharma V, Pica CM, Dahlheimer JL, Li W, Ochesky J, Ryan CE, Piwnica-Worms H, Piwnica-Worms D (2002) Noninvasive imaging of protein-protein interactions in living animals. Proc Natl Acad Sci USA 99: 6961–6966PubMedCrossRefGoogle Scholar
  52. Mahmood U, Tung CH, Bogdanov A, Weissleder R (1999) Near-infrared optical imaging of protease activity for tumor detection. Radiology 213: 866–870PubMedGoogle Scholar
  53. Mandl S, Schimmelpfennig C, Edinger M, Negrin RS, Contag CH (2002) Understanding immune cell trafficking patterns via in vivo bioluminescence imaging. J Cell Biochem (Suppl) 39: 239–248CrossRefGoogle Scholar
  54. Massoud TF, Gambhir SS (2002) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17: 545–580CrossRefGoogle Scholar
  55. McLaren DC, Gambhir SS, Satayamurthy N, Barrio JR, Scharfstein S, Toyokuni T, Wu L, Berk A, Cherry SR, Phelps ME, et al (1999) Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6: 785–791CrossRefGoogle Scholar
  56. Mueggler T, Sturchler-Pierrat C, Baumann D, Rausch M, Staufenbiel M, Ru-din M (2002a) Compromised hemodynamic response in amyloid precursor protein transgenic mice. J Neurosci 15: 7218–7224Google Scholar
  57. Mueggler T, Sturchler-Pierrat C, Baumann D, Rausch M, Rudin M (2002b) Compromised hemodynamic response in APP transgenic mice detected by functional MRI. Proceedings of the 10th ISMRM, Honolulu, p 402Google Scholar
  58. Nakajima A, Seroogy CM, Sandora MR, Tamer IH, Costa GL, Taylor-Edwards C, Bachmann MH, Contag CH, Fathman CG (2001) Antigen-specific T-cell-mediated gene therapy in collagen-induced arthritis. J Clin Invest 107: 1293–1301PubMedCrossRefGoogle Scholar
  59. Namavari M, Barrio JR, Toyokuni T, Gambhir SS, Cherry SR, Herschman HR, Phelps ME, Satayamurthy N (2000) Synthesis of 8–[18F1 fluoroguanine derivatives: in-vivo probes for imaging gene expression with PET. Nucl Med Biol 27: 157–162PubMedCrossRefGoogle Scholar
  60. Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1: 153–161PubMedCrossRefGoogle Scholar
  61. Ntziachristos V, Weissleder R (2002) Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media. Med Phys 29: 803–809PubMedCrossRefGoogle Scholar
  62. Ntziachristos V, Tung CH, Bremer C, Weissleder R (2002) Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8: 757–760PubMedCrossRefGoogle Scholar
  63. Oh C, Murray B, Bhattacharya N, Holland D, Tatton WG (1994) (-)-Deprenyl alters the survival of adult murine facial motor neurons after axotomy: increases in vulnerable C57BL strain but decreases in motor neuron degeneration mutants. J Neurosci Res 38: 64–74Google Scholar
  64. Petrovsky A, Schellenberger E, Josephson L, Weissleder R, Bogdanov A (2003) Near-Infrared fluorescent imaging of tumor apoptosis. Cancer Res 63: 1936–1942PubMedGoogle Scholar
  65. Poduslo JF, Wengenack TM, Curran GL, Wisniewski T, Sigurdsson EM, Ma-cura SI, Borowski BJ, Jack CR (2002) Molecular targeting of Alzheimer’s amyloid plaques for contrast-enhanced magnetic resonance imaging. Neurobiol Dis 11: 315–329PubMedCrossRefGoogle Scholar
  66. Price DL, Tanzi RE, Borchelt DR, Sisodia SS (1998) Alzheimer’s disease: genetic studies and transgenic models. Annu Rev Genet 32: 461–493PubMedCrossRefGoogle Scholar
  67. Rausch M, Sauter A, Frohlich J, Neubacher U, Radii EW, Rudin M (2001) Dynamic pattern of USPIO enhancement can be observed in macrophages after ischemic brain damage. Magn Reson Med 46: 1018–1021PubMedCrossRefGoogle Scholar
  68. Rausch M, Baumann D, Neubacher U, Rudin M (2002) In-vivo visualization of phagocytotic cells in rat brains after transient ischemia by USPIO. NMR Biomed 15: 278–283PubMedCrossRefGoogle Scholar
  69. Rausch M, Hiestand P, Baumann D, Cannet C, Rudin M (2003) MRI based monitoring of inflammation and tissue damage in acute and chronic relapsing EAE. Magn Reson Med 50: 309–314PubMedCrossRefGoogle Scholar
  70. Ray P, Pimenta H, Paulmurugan R, Berger F, Phelps ME, Iyer M, Gambhir SS (2002) Noninvasive quantitative imaging of protein-protein interactions in living subjects. Proc Natl Acad Sci USA 99: 3105–3110PubMedCrossRefGoogle Scholar
  71. Reese T, Bjelke B, Porszasz R, Baumann D, Bochelen D, Sauter A, Rudin M (2000) Regional brain activation by bicuculline visualized by functional magnetic resonance imaging. Time-resolved assessment of bicuculline-induced changes in local cerebral blood volume using an intravascular contrast agent. NMR Biomed 13: 43–49Google Scholar
  72. Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2: 123–131PubMedCrossRefGoogle Scholar
  73. Rudin M, Briner U, Doepfner W (1988) Quantitative magnetic resonance imaging of estradiol-induced pituitary hyperplasia in rats. Magn Reson Med 7: 285–291PubMedCrossRefGoogle Scholar
  74. Rudin M, Beckmann N, Porszasz R, Reese T, Bochelen D, Sauter A (1999) In vivo magnetic resonance methods in pharmaceutical research: current status and perspectives. NMR Biomed 12: 69–97PubMedCrossRefGoogle Scholar
  75. Salazar DE, Fischman AJ (1999) Central nervous system pharmacokinetics of psychiatric drugs. J Clin Pharmacol (Suppl): 10S - 12SGoogle Scholar
  76. Sauter A, Rudin M (1987) Effects of calcium antagonists on high-energy phosphates in ischemic rat brain measured by 31P NMR spectroscopy. Magn Reson Med 4: 1–8PubMedCrossRefGoogle Scholar
  77. Sauter A, Rudin M, Wiederhold KH, Hof RP (1989) Cerebrovascular, biochemical, and cytoprotective effects of isradipine in laboratory animals. Am J Med 86 (Suppl 4A): 134–146PubMedCrossRefGoogle Scholar
  78. Sauter A, Reese T, Porszasz R, Baumann D, Rausch M, Rudin M (2002) Recovery of function in cytoprotected cerebral cortex in rat stroke model assessed by functional MRI. Magn Reson Med 47: 759–765PubMedCrossRefGoogle Scholar
  79. Scheffold C, Kornacker M, Scheffold YC, Contag CH, Negrin RS (2002) Visualization of effective tumor targeting by CD8+ natural killer T cells redirected with bispecific antibody F(ab’)(2)HER2xCD3. Cancer Res 62: 5785–5791PubMedGoogle Scholar
  80. Schellenberger EA, Hogemann D, Josephson L, Weissleder R (2002) Annex-in V-CLIO: a nanoparticle for detecting apoptosis by MRI. Acad Radiol 9 (Suppl 2): S310 — S311PubMedCrossRefGoogle Scholar
  81. Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, Read S, Satyamurthy N, Petric A, Huang SC, Barrio JR (2002) Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 10: 24–35PubMedGoogle Scholar
  82. Siegel RA, Tolcsvai L, Rudin M (1988) Partial inhibition of the growth of transplanted Dunning rat prostate tumors with the long-acting somatostatin analog Sandostatin (SMS 201–995). Cancer Res 48: 4651–4655PubMedGoogle Scholar
  83. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC (1998) Detection of tumor angiogenesis in vivo by alphav-beta3–targeted magnetic resonance imaging. Nat Med 4: 623–626PubMedCrossRefGoogle Scholar
  84. Sipkins DA, Gijbels K, Tropper FD, Bednarski M, Li KC, Steinman L (2000) ICAM-1 expression in autoimmune encephalitis visualized using magnetic resonance imaging. J Neuroimmunol 104: 1–9PubMedCrossRefGoogle Scholar
  85. Smith AD, Jobst KA (1996) Use of structural imaging to study the progression of Alzheimer’s disease. Br Med Bull 52: 575–586PubMedCrossRefGoogle Scholar
  86. Strauss WL, Layton ME, Hayes CE, Dager SR (1997) 19F magnetic resonance spectroscopy investigation in vivo of acute and steady-state brain fluvoxamine levels in obsessive-compulsive disorder. Am J Psychiatry 154: 516–522Google Scholar
  87. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, Ledermann B, Burki K, Frey P, Paganetti PA, Waridel C, Calhoun ME, Tucker M, Probst A, Staufenbiel M, Sommer B (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94: 13287–13292PubMedCrossRefGoogle Scholar
  88. Troprès I, Grimault S, Vaeth A, Grillon E, Julien C, Payen JF, Lamalle L, Decorps M (2001) Vessel size imaging. Magn Reson Med 45: 397–408PubMedCrossRefGoogle Scholar
  89. Tung CH, Mahmood U, Bredow S, Weissleder R (2000) In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res 60: 4953–4958PubMedGoogle Scholar
  90. Tung CH, Lin Y, Moon WK, Weissleder R (2002) A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging. Chembiochem 3: 784–786PubMedCrossRefGoogle Scholar
  91. Turetschek K, Preda A, Floyd E, Shames DM, Novikov V, Roberts TP, Wood JM, Fu Y, Carter WO, Brasch RC (2002) MRI monitoring of tumor response to a novel VEGF tyrosine kinase inhibitor in an experimental breast cancer model. Acad Radiol 9 (Suppl 2): 5519 — S520CrossRefGoogle Scholar
  92. Van den Abbeele AD, Badawi RD (2002) Use of positron emission tomography in oncology and its potential role to assess response to imatinib mesylate therapy in gastrointestinal stromal tumors (GISTS). Europ J Cancer 38 (Suppl 5): S60–65CrossRefGoogle Scholar
  93. van Dijke C, Brasch RC, Roberts TP, Weidner N, Mathur A, Shames DM, Desmar F, Lang P, Schwickert HC (1996) Mammary carcinoma model: correlation of macromolecular contrast-enhanced MR imaging characterization of tumor microvasculature and histologic capillary density. Radiology 198: 813–818PubMedGoogle Scholar
  94. van Royen EA, Verhoeff NP, Meylaerts SA, Miedema AR (1996) IndiumI11–DTPA-octreotide uptake measured in normal and abnormal pituitary glands. J Nucl Med 37: 1449–1451PubMedGoogle Scholar
  95. Wadghiri YZ, Sigurdsson E, Tang C, Turnbull D (2002) MR micro-Imaging of contrast tagged amyloid plaques in transgenic mouse models of Alzheimer’s disease. Proceedings of 10th ISMRM Meeting, p 388Google Scholar
  96. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9: 123–128PubMedCrossRefGoogle Scholar
  97. Weissleder R, Tung CH, Mahmood U, Bogdanov A (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17: 375–378PubMedCrossRefGoogle Scholar
  98. Weissleder, R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca EA, Basilion JP (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6: 351–355PubMedCrossRefGoogle Scholar
  99. Wetterwald A, van der Pluijm G, Que I, Sijmons B, Buijs J, Karperien M, Lowik CW, Gautschi E, Thalmann GN, Cecchini MG (2002) Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am J Pathol 160: 1143–1153PubMedCrossRefGoogle Scholar
  100. Wolf W, Presant CA, Waluch V (2000) 19F-MRS studies of fluorinated drugs in humans. Adv Drug Deliv Rev 41: 55–74Google Scholar
  101. Xu H, Li SJ, Bodurka J, Zhao X, Zheng XX, Stein AA (2000) Heroin-induced neuronal activation in rat brain assessed by functional MRI. NeuroReport 11: 1085–1092PubMedCrossRefGoogle Scholar
  102. Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle KM (2001) Noninvasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 7: 1241–1244PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • M. Rudin
  • P. Allegrini
  • N. Beckmann
  • H.-U. Gremlich
  • R. Kneuer
  • D. Laurent
  • M. Rausch
  • M. Stoeckli

There are no affiliations available

Personalised recommendations