The Formation and Fragmentation of Periodic Bands Through Precipitation and Ostwald Ripening

  • Hans-Jürgen Krug
  • Karl-Heinz Jacob
  • Sabine Dietrich


The formation of periodic band structures involving certain structural defects (lateral interruptions and branching of bands) through selforganization in colloidal media is demonstrated both by classical Liesegang experiments and by numerical simulation of a competitive particle growth model. Fragmentation or branching of bands can be explained as consequence of an instability during the precipitation process itself (Ostwald ripening) by excluding of any external mechanical influences. The detailed morphological similarity of these patterns with periodic bands in some mineral samples (zebra rock) suggests that the mineral pattern formation was in the same manner governed by self-organized precipitation processes.


Chem Phys Lateral Interruption Periodic Band Periodic Precipitation Ostwald Ripening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bradford SC (1922) Die Adsorptionstheorie der geschichteten Niederschläge. Kolloid-Z 30:364–367.CrossRefGoogle Scholar
  2. Chadam J (1987) Reaction-Percolation Instability. In: Nicolis C, Nicolis G (eds) Irreversible Phenomena and Dynamical Systems Analysis in Geosciences. Reidel, Dordrecht, pp 523–532.CrossRefGoogle Scholar
  3. Chadam J, Peirce A, Ortoleva P (1990) Stability of Reactive Flows in Porous Media: Coupled Porosity and Viscosity Changes. SIAM J Appl Math 51: 684–692.CrossRefGoogle Scholar
  4. Chen W, Ortoleva P (1990a) Self-Organization in Far-From-Equilibium Reactive Porous Media Subject to Reaction Front Fingering. In: Walgraef D, Ghoniem NM (eds) Patterns, Defects and Materials Instabilities. NATO ASI Series 183. Reidel, Dordrecht, pp 203–220.Google Scholar
  5. Chen W, Ortoleva P (1990b): Reaction Front Fingering in Carbonate-Cemented Sandstones. Earth-Sci Rev 29: 183–198.Google Scholar
  6. Chiaradia M (1993) Arsenopyrite Geothermometry and As2 Conditions in the W-As-Au Skarn of Salanfe (Valais, Switzerland): Tectonic Implications in the Skarn Formation Processes. Mineralium Deposita, (submitted).Google Scholar
  7. Dee GT (1986) Patterns Produced by Precipitation at a Moving Reaction Front. Phys Rev Lett 57: 275–278.CrossRefGoogle Scholar
  8. Dewers T, Ortoleva P (1989) The Self-Organization of Mineralization Patterns in Metamorphic Rocks through Mechano-Chemical Coupling. J Phys Chem 93: 2842–2848.CrossRefGoogle Scholar
  9. Dewers T, Ortoleva P (1990a) Geochemical Self-Organization DI: A Mechano-Chemical Model of Metamorphic Differentiation. Am J Sci 290: 473–521.CrossRefGoogle Scholar
  10. Dewers T, Ortoleva P (1990b) A Coupled Reaction / Transport / Mechanical Model for Intergranular Pressure Solution, Stylolites, and Differential Compaction and Cementation in Clean Sandstones. Geochim Cosmochim Acta 54: 1609–1625.CrossRefGoogle Scholar
  11. Dhar NR, Chatterji AC (1925) Theorien der Liesegangringbildung. Kolloid-Z 37: 89–97.CrossRefGoogle Scholar
  12. Feeney R, Schmidt SL, Strickholm P, Chadam J, Ortoleva P (1983) Periodic Precipitation and Coarsening Waves: Applications of the Competitive Particle Growth Model. J Chem Phys 78: 1293–1311.CrossRefGoogle Scholar
  13. Feinn D, Ortoleva P, Scalf W, Schmidt S, Wolff M (1978) Spontaneous Pattern Formation in Precipitating Systems. J Chem Phys 69: 27–39.CrossRefGoogle Scholar
  14. Flicker MR, Ross J (1974) Mechanism of Chemical Instability for Periodic Precipitation Phenomena. J Chem Phys 60: 3458–3465.CrossRefGoogle Scholar
  15. Freundlich H, Schucht E (1913) Über die Geschwindigkeit des Adsorptionsrückgangs bei der Umwandlung des Quecksilbersulfids aus der amorphen Form in eine mehr kristallinische. Z phys Chem 85: 660–680.Google Scholar
  16. Hedges ES (1932) Liesegang Rings and other Periodic Structures. Chapman &; Hall, London.Google Scholar
  17. Jacob KH (1974) Deutung der Genese von Fluoritlagerstätten anhand ihrer Spurenelemente — insbesondere an fraktionierten seltenen Erden. Thesis, Techn Univ Berlin, Dep of Mining and Geosciences.Google Scholar
  18. Jacob KH, Zimmerle W (1990) Diagenetische Phänomene in Sedimentgesteinen des Karbons, gesehen als rhythmische Gefügebildungen durch Energiedissipation in offenen Systemen. Z Ford Bergb Hüttenw der Techn Univ Berlin 2: 12–18.Google Scholar
  19. Jacob KH, Krug HJ, Dietrich S (1992) Lagerstättenbildung durch Energiepotentiale in der Lithosphäre. Erzmetali 45: 505–513.Google Scholar
  20. Jacob KH, Dietrich S, Krug HJ (1994) Self-Organization of Mineral Fabrics. In: Kruhl JH (ed) Fractals and Dynamic Systems in Geoscience. Springer, Berlin Heidelberg New York, pp 259–268 (this volume).Google Scholar
  21. Kai S, Müller SC (1985) Spatial and Temporal Macroscopic Structures in Chemical Reaction Systems: Precipitation Patterns and Interfacial Motion. Science on Form (Tokyo) 1: 9–39.Google Scholar
  22. Kai S, Müller SC , Ross J (1982) Measurements of Temporal and Spatial Sequences of Events in Periodic Precipitation Processes. J Chem Phys 76: 1392–1406.CrossRefGoogle Scholar
  23. Klein W (1990) Dissipative Gefügebildungen in Lockersedimenten durch Einwirkung elektrischer Felder. Thesis, Techn Univ Berlin, Dep of Mining and Geosciences.Google Scholar
  24. Krug HJ, Jacob KH (1993) Genese und Fragmentierung rhythmischer Bänderungen durch Selbstorganisation. Z Dt Geol Ges 144: 451–460.Google Scholar
  25. Kuhnert L, Niedersen U (1987) Selbstorganisation chemischer Strukturen. (Ostwalds Klassiker der exakten Wissenschaften 273). Geest & Portig, Leipzig.Google Scholar
  26. Liesegang RE (1896) A-Linien. Lieseg photogr Arch 21: 321–326.Google Scholar
  27. Liesegang RE (1913) Geologische Diffusionen. Steinkopf, Dresden Leipzig.Google Scholar
  28. Liesegang RE (1915) Die Achate. Steinkopf, Dresden Leipzig.Google Scholar
  29. Lifshitz IM, Slyozov W (1961) The Kinetics of Precipitation from Supersaturated Solid Solutions. J Phys Chem Solids 19: 35–50.CrossRefGoogle Scholar
  30. Mc Birney AR, Noyes RM (1979) Crystallization and Layering of the Skaergaard Intrusion. J Petrol 20: 487–554.CrossRefGoogle Scholar
  31. Müller SC, Kai S, Ross J (1982) Curiosities in Periodic Precipitation Patterns. Science 216: 635–637.CrossRefGoogle Scholar
  32. Ortoleva P (1984) From Nonlinear Waves to Spiral and Speckle Patterns. Non-Equilibrium Phenomena in Geological and Biological Systems. Physica 12 D: 305–320.Google Scholar
  33. Ortoleva P (1987) Modeling Geochemical Self Organization. In: Nicolis C, Nicolis G (eds) Irreversible Phenomena and Dynamical Systems Analysis in Geosciences. Reidel Publishing Comp., Dordrecht, pp 493–510.CrossRefGoogle Scholar
  34. Ortoleva P (1994): Geochemical Self-Organization. Oxford University Press, Oxford.Google Scholar
  35. Ortoleva P, Chadam J, El-Badewi M, Feeney R, Feinn D, Haase S, Larter R, Merino E, Strickholm P, Schmidt S (1982a) Mechanisms of Bio- and Geo- Pattern Formation and Chemical Signal Propagation. In: Reichl LE, Schieve WC (eds) Instabilities, Bifurcations and Fluctuations in Chemical Systems. University of Texas Press, Austin.Google Scholar
  36. Ortoleva P, Merino E, Strickholm P (1982b) Kinetics of Metamorphic Layering in Anisotropically Stressed Rocks. Amer J Sci 282: 617–643.CrossRefGoogle Scholar
  37. Ortoleva P, Auchmuty G, Chadam J, Hettmer J, Merino E, Moore CH, Ripley E (1986) Redox front Propagation and Banding Modalities. Physica 19 D: 334–354.Google Scholar
  38. Ortoleva P, Merino E, Chadam J, Moore CH (1987) Geochemical Self-Organization I: Reaction-Transport Feedbacks and Modeling Approach. Amer J Sci 287: 979–1007.CrossRefGoogle Scholar
  39. Ostwald Wi (1897a) A-Linien von R. E. Liesegang (Review). Z phys Chem 23: 365.Google Scholar
  40. Ostwald Wi (1897b) Lehrbuch der allg. Chemie, 2. umgearb Aufl, n, 2.: Verwandtschaftslehre. Engelmann, Leipzig, pp 777–780.Google Scholar
  41. Ostwald Wi (1900) Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper. Z phys Chem 34: 495–503.Google Scholar
  42. Ostwald Wo. (1925) Zur Theorie der Liesegang”schen Ringe. Kolloid Z 36: 380–390.CrossRefGoogle Scholar
  43. Prager S (1956) Periodic Precipitation. J Chem Phys 25: 279–283.CrossRefGoogle Scholar
  44. Smith DA (1984) On Ostwald”s Supersaturation Theory of Rhythmic Precipitation (Liesegang”s Rings). J Chem Phys 81: 3102–3115.CrossRefGoogle Scholar
  45. Stern KH (1954) The Liesegang Phenomenon. Chem Revs 54: 79–99.CrossRefGoogle Scholar
  46. Stern KH (1967) Bibliography of Liesegang Rings (2nd ed.). U.S. Governement Printing Office, Washington D.C.Google Scholar
  47. Sultan R, Ortoleva P (1993) Periodic and Aperiodic Macroscopic Patterning in Two Precipitate Postn-Nucleation Systems. Physica D 63: 202–212.CrossRefGoogle Scholar
  48. Sultan R, Ortoleva P , De Pasquale F, Tartaglia P (1990) Bifurcation of the Ostwald -Liesegang Supersaturation-Nucleation-Depletion Cycle. Earth Sci Rev 29: 163–173.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Hans-Jürgen Krug
    • 1
  • Karl-Heinz Jacob
    • 2
  • Sabine Dietrich
    • 2
  1. 1.Intitut für Theoretische Physik, Arbeitsgruppe „Dissipative Strukturen”Technische Universität BerlinBerlinGermany
  2. 2.Institut für Angewandte Geophysik, Petrologie und LagerstättenforschungTechnische Universität BerlinBerlinGermany

Personalised recommendations