Ultrasound Absorption in Solids

  • W. Arnold


In most cases ultrasound is generated by piezoelectric transducers. The principle can be easily seen by a one-dimensional consideration.


Titanium Q_ua_rt_z Microwave Anisotropy Attenuation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to part R Ultrasound Absorption in Solids

  1. [R.1.1]
    J.W. Tucker, V.W. Rampton, “Microwave Ultrasonic Methods”, North-Holland, (1972)Google Scholar
  2. [R.1.2]
    G. S. Kino, “Acoustic Waves, Devices, Imaging, and Signal Processing”, Prentice-Hall, Inc. (1987)Google Scholar
  3. [R.2.1]
    R.Truell, C. Elbaqm, B. B. Chick, “Ultrasonic Methods” in Solid State Physics, Academic Press, 1969Google Scholar
  4. [R.2.2]
    K. Goebbels, “Structure Analysis by Scattered Ultrasonic Radiation”, in Research Techniques in ND, Ed. R.S. Sharpe, Academic Press, London, IV, (1980) 87–150Google Scholar
  5. [R.2.3]
    S. Hirsekorn, P.W. Andel, U. Netzelmann, “Ultrasonic Methods to Detect and Evaluate Damage in Steel”, Nondestr. Test. and Evaluation, 15 (1980) 373–393CrossRefGoogle Scholar
  6. [R.2.4]
    B. Boyd, C.P. Chiou, B. Thompson, J. Oliver, “Development of Geometrical Models of Hard-Alpha Inclusions for Ultrasonic Analysis in Titanium Alloys”, Review of Progress in Quantitative Nondestructive Evaluation, Eds. D.O. Thompson, D.E. Chimenti, Plenum, New York, XVIII (1998) 823–830CrossRefGoogle Scholar
  7. [R.3.1]
    R.Truell, C. Elbaum, B. B. Chick, “Ultrasonic Methods” in Solid State Physics, Academic Press, 1969Google Scholar
  8. [R.3.2]
    G. Gremaud, S. Kustov, “Theory of dislocation-solute atom interaction in solid solutions and related nonlinear anelasticity”, Phys. Rev. B, 60 (1999) 9353–9364CrossRefGoogle Scholar
  9. [R.3.3]
    G. Gremaud, “Dislocation-point defect interaction” in Mechanical Spectroscopy Q-1 2001, edited by R. Schaller, G. Fantozzi and G. Gremaud, Chapter 3.3, Materials Science Forum 366–368 (2001) 178–247, Trans Tech Publications, SwitzerlandGoogle Scholar
  10. [R.4.1]
    R.T. Beyer, S. V. Letcher, “Physical Ultrasonics”, Academic Press 1969Google Scholar
  11. [R.4.2]
    K. Dransfeld J. de Physique Cl 28 (1967) 157–162 Formulas of Acoustics 1141 R. Ultrasound Absorption in SolidsGoogle Scholar
  12. [R.6.1]
    A. R. Hutson, D.L. White, J. Appl. Phys. 33, 40–47 (1962)CrossRefGoogle Scholar
  13. [R.7.1]
    S. Hunklinger, W. Arnold, Phys. Acoustics, Eds. W.P. Mason and R.N. Thurston, XII (1976) 156–215Google Scholar
  14. [R.7.2]
    C. Enss, S. Hunklinger, “Tieftemperaturphysik”, Springer Berlin, 2000Google Scholar
  15. [R.8.1]
    R. De Batist, “Internal Friction of Structural Defects in Solids”, North-Holland Publishing Company, Amsterdam (1972)Google Scholar
  16. [R.8.2]
    A. S. Nowick, B.S. Berry, “Anelastic Relaxation in Crystalline Solids”, Academic Press, (1972)Google Scholar
  17. [R.8.3]
    R. Schaller, G. Fantozzi, G. Gremaud (Eds.) “Mechanical Spectroscopy Q-1 2001”, Materials Science Forum 366–368, Trans Tech Publications, Switzerland (2001)Google Scholar
  18. [R.9.1]
    A.B. Bhatia, “Ultrasonic Absorption”, Clarendon Press, Oxford (1967)Google Scholar
  19. [R.10.1]
    M. O’donell, E.T. Jaynes,G. Miller, J. Acosut. Soc. 69, 696–701 (1969)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • W. Arnold

There are no affiliations available

Personalised recommendations