Ultrasound Absorption in Solids

  • W. Arnold


In most cases ultrasound is generated by piezoelectric transducers. The principle can be easily seen by a one-dimensional consideration.


Transverse Wave Fermi Surface Sound Velocity Ultrasonic Wave Trans Tech Publication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to part R Ultrasound Absorption in Solids

  1. [R.1.1]
    J.W. Tucker, V.W. Rampton, “Microwave Ultrasonic Methods”, North-Holland, (1972)Google Scholar
  2. [R.1.2]
    G. S. Kino, “Acoustic Waves, Devices, Imaging, and Signal Processing”, Prentice-Hall, Inc. (1987)Google Scholar
  3. [R.2.1]
    R.Truell, C. Elbaqm, B. B. Chick, “Ultrasonic Methods” in Solid State Physics, Academic Press, 1969Google Scholar
  4. [R.2.2]
    K. Goebbels, “Structure Analysis by Scattered Ultrasonic Radiation”, in Research Techniques in ND, Ed. R.S. Sharpe, Academic Press, London, IV, (1980) 87–150Google Scholar
  5. [R.2.3]
    S. Hirsekorn, P.W. Andel, U. Netzelmann, “Ultrasonic Methods to Detect and Evaluate Damage in Steel”, Nondestr. Test. and Evaluation, 15 (1980) 373–393CrossRefGoogle Scholar
  6. [R.2.4]
    B. Boyd, C.P. Chiou, B. Thompson, J. Oliver, “Development of Geometrical Models of Hard-Alpha Inclusions for Ultrasonic Analysis in Titanium Alloys”, Review of Progress in Quantitative Nondestructive Evaluation, Eds. D.O. Thompson, D.E. Chimenti, Plenum, New York, XVIII (1998) 823–830CrossRefGoogle Scholar
  7. [R.3.1]
    R.Truell, C. Elbaum, B. B. Chick, “Ultrasonic Methods” in Solid State Physics, Academic Press, 1969Google Scholar
  8. [R.3.2]
    G. Gremaud, S. Kustov, “Theory of dislocation-solute atom interaction in solid solutions and related nonlinear anelasticity”, Phys. Rev. B, 60 (1999) 9353–9364CrossRefGoogle Scholar
  9. [R.3.3]
    G. Gremaud, “Dislocation-point defect interaction” in Mechanical Spectroscopy Q-1 2001, edited by R. Schaller, G. Fantozzi and G. Gremaud, Chapter 3.3, Materials Science Forum 366–368 (2001) 178–247, Trans Tech Publications, SwitzerlandGoogle Scholar
  10. [R.4.1]
    R.T. Beyer, S. V. Letcher, “Physical Ultrasonics”, Academic Press 1969Google Scholar
  11. [R.4.2]
    K. Dransfeld J. de Physique Cl 28 (1967) 157–162 Formulas of Acoustics 1141 R. Ultrasound Absorption in SolidsGoogle Scholar
  12. [R.6.1]
    A. R. Hutson, D.L. White, J. Appl. Phys. 33, 40–47 (1962)CrossRefGoogle Scholar
  13. [R.7.1]
    S. Hunklinger, W. Arnold, Phys. Acoustics, Eds. W.P. Mason and R.N. Thurston, XII (1976) 156–215Google Scholar
  14. [R.7.2]
    C. Enss, S. Hunklinger, “Tieftemperaturphysik”, Springer Berlin, 2000Google Scholar
  15. [R.8.1]
    R. De Batist, “Internal Friction of Structural Defects in Solids”, North-Holland Publishing Company, Amsterdam (1972)Google Scholar
  16. [R.8.2]
    A. S. Nowick, B.S. Berry, “Anelastic Relaxation in Crystalline Solids”, Academic Press, (1972)Google Scholar
  17. [R.8.3]
    R. Schaller, G. Fantozzi, G. Gremaud (Eds.) “Mechanical Spectroscopy Q-1 2001”, Materials Science Forum 366–368, Trans Tech Publications, Switzerland (2001)Google Scholar
  18. [R.9.1]
    A.B. Bhatia, “Ultrasonic Absorption”, Clarendon Press, Oxford (1967)Google Scholar
  19. [R.10.1]
    M. O’donell, E.T. Jaynes,G. Miller, J. Acosut. Soc. 69, 696–701 (1969)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • W. Arnold

There are no affiliations available

Personalised recommendations