Advertisement

Analytical and Numerical Methods in Acoustics

  • M. Ochmann
  • F. P. Mechel

Abstract

Numerous analytical and numerical methods are displayed in this book together with the solutions for special tasks. This chapter contains analytical and numerical methods to be applied in acoustics, going beyond the scope of single examples. The description of a method unavoidably needs more textual explanations than the representation of just the resulting formulas. Section O.1 describes a procedure for optimisation of the parameters of a sound absorber; the Section O.2 outlines a method for the evaluation of many concatenated transfer matrices. The Section O.3 will present five standard problems of numerical acoustics which frequently occur in practical applications. In Sects. O.4–O.6 three important methods for the numerical solution of these problems will be described. The source simulation technique and the boundary element method are mainly used for exterior problems such as the radiation or the scattering problem (see Sects. O.4 and O.5). The finite element method is especially suited for computing sound fields in interior spaces (see Sect. O.6). The fluid-structure interaction problem can be treated by a combined finite element and boundary element approach, for example with the method of Sect. O.6. The transmission problem can be formulated in terms of boundary integral equations (see Sect. O.5). Analytical field solutions for benchmark models are given in Sects. O.7, O.8.

Keywords

Boundary Element Method Boundary Integral Equation Helmholtz Equation Sound Field Sound Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to part O. Analytical and Numerical Methods in Acoustics

Section O.3

  1. [1]
    Junger, M. C., Feit, D. “Sound, Structures, and their Interaction” The Massachusetts Institute of Technology Press, Cambridge, 1972.Google Scholar
  2. [2]
    Koopmann, G. H., Perraud, J. C. “Crack location by means of surface acoustic intensity measurements”, ASME publication for presentation at the Winter Annual Meeting, Washington, 1981.Google Scholar
  3. [3]
    Urick, R. J. “Principles of Underwater Sound” McGraw-Hill, New York, 3rd ed., 1983.Google Scholar
  4. [4]
    Seybert, A. F., Cheng, C. Y., Wu, T. W. J.Acoust.Soc.Amer. 88 (1990) 1612–1618 “The solution of coupled interior/exterior acoustic problems using the boundary element method”Google Scholar
  5. [5]
    Soize, C. J.Acoust.Soc.Amer. 103 (1998) 3393–3406 “Reduced models in the medium-frequency range for general external structural-acoustic systems”Google Scholar
  6. [6]
    Soize, C. J.Acoust.Soc.Amer. 106 (1999) 3362–3374 “Reduced models for structures in the medium-frequency range coupled with internal acoustic cavities”Google Scholar
  7. [7]
    Colton, D., Kress, R. “Integral Equations in Scattering Theory” Wiley-Interscience Publication, New York, 1983.Google Scholar

Section O.4

  1. [1]
    Ochmann, M. Acustica 81 (1995) 512–527 “The source simulation technique for acoustic radiation problems”Google Scholar
  2. [2]
    Ochmann, M. “Source simulation techniques for solving boundary element problems”, in: Boundary Elements in Acoustics,Advances and Applications in Boundary Element, ed. by Otto von Estorff, Chapter 7, WIT Press, Computat. Mechan. Publ., Southampton, Boston 2000.Google Scholar
  3. [3]
    Kress, R. and Mohsen, A. Math.Meth.in Appl.Sci.., 8 (1986) 585–597 “On the simulation source technique for exterior problems in acoustics”Google Scholar
  4. [4]
    Ochmann, M. J.Acoust.Soc.Am. 105 (1999) 2574–2584 “The full-field equations for acoustic radiation and scattering” Formulas of Acoustics 1014 0. Analytical and Numerical MethodsGoogle Scholar
  5. [5]
    Ochmann, M. Acustica 72 (1990) 233–246 “Multipole radiator synthesis - an effective method for calculating the radiated sound field of vibrating structures of arbitrary surface configuration”, in German.Google Scholar
  6. [6]
    Ochmann, M., Wellner, F. Rev.Franc.Mécanique, Numéro spécial 1991, pp. 457–471 “Calculation of sound radiation from complex machine structures using the multipole radiator synthesis and the boundary element multigrid method”Google Scholar
  7. [7]
    Koopmann, G., Song, L., Fahnline, J. J.Acoust.Soc.Amer. 86 (1989) 2433–2438 “A method for computing acoustic fields based on the principle of wave superposition”Google Scholar
  8. [8]
    Fahnline, J. B., Koopmann, G. H. J.Acoust.Soc.Amer. 90 (1991) 2808–2819 “A numerical solution for the general radiation problem based on the combined methods of superposition and singular-value decomposition”Google Scholar
  9. [9]
    Jeans, R., Mathews, I. C. J.Acoust.Soc.Amer. 92 (1992) 1156–1166 “The wave superposition method as a robust technique for computing acoustic fields”Google Scholar
  10. [10]
    Ochmann, M. “The multipole method: Contributions of Manfred Heckl and new developments for high-frequency acoustic scattering” Proc. 16th ICA and 135th meeting of the ASA, 1998, pp. 1223–1224.Google Scholar
  11. [11]
    Ochmann, M., Homm, A. “Calculation of the acoustic radiation from a propeller using the multipole method”, Proc. 3rd Int. Congress on Air-and Structure-Borne Sound and Vibration, Vol. 2, International Scientific Pub., Auburn, pp. 1215–1220, 1994.Google Scholar
  12. [12]
    Attala, N., Winckelmans, G., Sgard, F. Acust/Acta Acust 85 (1999) 47–53 “A multiple multipole expansion approach for predicting the sound power of vibrating structures”Google Scholar
  13. [13]
    Heckl, M. Acustica 68 (1989) 251–257 “Remarks on the calculation of sound radiation using the method of spherical wave synthesis”, in German.Google Scholar
  14. [14]
    Cremer, L., Wang, M. Acustica 65 (1988) 53–74 “Synthesis of spherical wave fields to generate the sound radiated from bodies of arbitrary shape, its realisation by calculation and experiment”, in German.Google Scholar
  15. [15]
    Masson, P., Redon, E., Priou, J.-P., Gervais, Y. “The application of the Trefftz Method to acoustics” Proc. 3rd Int. Congr. on Air-and Structure-Borne Sound and Vibration, Vol. 3, International Scientific Pub., Auburn, pp. 1809–1816, 1994.Google Scholar
  16. [16]
    Bobrovnitskii, Yu. I., Tomilina, T. M. Acoust. Physics 41 (1995) 649–660 “General properties and fundamental errors of the method of equivalent sources”Google Scholar
  17. [17]
    Johnson, M. E., Elliott, S. J., Baek, K-H., Garcia-Bonito, J. “An equivalent source technique for calculating the sound field inside an enclosure containing scattering objects” J.Acoust.Soc.Amer. 104 (1998) 1221–1231CrossRefGoogle Scholar
  18. [18]
    Karageorghis, A., Fairweather, G. J.Acoust.Soc.Amer. 104 (1998) 3212–3218 “The method of fundamental solutions for axisymmetric acoustic scattering and radiation problems”Google Scholar
  19. [19]
    Bobrovnitskii, Yu. I., Tomilina, T. M. Sov.Phys.Acoust. 36 (1990) 334–338 “Calculation of radiation from finite elastic bodies by the method of auxiliary sources”Google Scholar
  20. [20]
    Hwang, J., Chang, S. J.Acoust.Soc.Amer. 90 (1991) 1167–1179 “A retracted boundary integral equation for exterior acoustic problem with unique solution for all wave numbers”Google Scholar
  21. [21]
    Cunefare, A. K., Koopmann, G. H., Brod, K. J.Acoust.Soc.Amer. 85 (1989) 39–48 “A boundary element method for acoustic radiation valid for all wavenumbers”Google Scholar
  22. [22]
    Stepanishen, P. R. J.Acoust.Soc.Am. 101 (1997) 3270–3277 “A generalized internal source density method for the forward and backward projection of harmonic pressure fields from complex bodies”Google Scholar
  23. [23]
    Kropp, W., Svensson, U. Acustica 81 (1995) 528–543 “Application of the time domain formulation of the method of equivalent sources to radiation and scattering problems”Google Scholar
  24. [24]
    Guyader, J.L. “Methods to reduce computing time in structural acoustic prediction” Proc. 3rd Int. Congr. on Air-and Structure-Borne Sound and Vibration, Vol. 1, International Scientific Pub., Auburn, pp. 5–20, 1994.Google Scholar
  25. [25]
    Colton, D., Kress, R. “Integral Equations in Scattering Theory” Wiley-Interscience Publication, New York, 1983.Google Scholar
  26. [26]
    Morse, P.M., Feshbach, H. “Methods of Theoretical Physics”, Part I McGraw-Hill, New York, 1953.Google Scholar
  27. [27]
    Abramowitz, M., Stegun, I. A. “Handbook of Mathematical Functions”, 9th Printing Dover Publications, Inc., New York, 1972.Google Scholar
  28. [28]
    Hackman, R. H. J.Acoust.Soc.Amer. 75 (1984) 35–45 “The transition matrix for acoustic and elastic wave scattering in prolate spheroidal coordinates”Google Scholar
  29. [29]
    Higgins, J. R. “Completeness and Basis Properties of Sets of Special Functions” Cambridge University Press, Cambridge, 1977.Google Scholar
  30. [30]
    Vekua, N. P. Dokl.Akad.Nauk SSSR 90 (1953) 715–718 “On the completeness of the system of metaharmonic functions” (in Russian).Google Scholar
  31. [31]
    Kleinman, R. E., Roach, G. F.,Ström, S. E. G. Proc.Roy.Soc.Lond., A 394 (1984) 121–136 “The null field method and modified Green functions”Google Scholar
  32. [32]
    Martin, P. A. Wave Motion 4 (1982) 391–408 “Acoustic scattering and radiation problems, and the null-field method”Google Scholar
  33. [33]
    Stupfel, B., Lavie, A.,Decarpigny, J. N. J.Acoust.Soc.Amer. 83 (1988) 927–941 “Combined integral formulation and null-field method for the exterior acoustic problem”Google Scholar
  34. [34]
    Waterman, P. C. J.Acoust.Soc.Amer. 45 (1969) 1417–1429 “New formulation of acoustic scattering”Google Scholar
  35. [35]
    Schenck, H. A. J.Acoust.Soc.Amer. 44 (1968) 41–58 “Improved integral formulation for acoustic radiation problems”Google Scholar
  36. [36]
    Wu, S. F., Yu, J. J.Acoust.Soc.Amer. 104 (1998) 2054–2060 “Reconstructing interior acoustic pressure fields via Helmholtz equation least-squares method”Google Scholar
  37. [37]
    Millar, R. F. IMA J.Appl.Math. 30 (1983) 27–37 “On the completeness of sets of solutions to the Helmholtz equation”Google Scholar
  38. [38]
    Ochmann, M. “Calculation of sound radiation from complex structures using the multipole radiator synthesis with optimized source locations” Proc. 2nd Int. Congr. on Recent Developm. in Air-and Struct.-Borne Sound and Vibration, International Scientific Pub., Auburn, pp. 1887–1194, 1992.Google Scholar
  39. [39]
    Makarov, A. N., Ochmann, M. J.Acoust.Soc.Am. 103 (1998) 742–750 “An iterative solver of the Helmholtz integral equation for high-frequency acoustic scattering”Google Scholar
  40. [40]
    Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T. “Numerical Recipes, the Art of Scientific Computing” Cambridge University Press, Cambridge, 2nd ed., 1990.Google Scholar
  41. [41]
    Part-Enander, E., Sjoberg, A., Melin, B., Isaksson, P. “The MATLAB Handbook”, Addison-Wesley, Harlow, 1996.Google Scholar
  42. [42]
    Tobocman, W. J.Acoust.Soc.Amer. 77 (1985) 369–374 “Comparison of the T-matrix and Helmholtz integral equation methods for wave scattering calculations” Formulas of Acoustics 1017 O. Analytical and Numerical MethodsGoogle Scholar
  43. [43]
    Homm, A., Schneider, H-G. “Application of BE and coupled FE/BE in underwater acoustics”, in: Boundary Elements in Acoustics,Advances and Applications in Boundary Element (ed. by Otto von Estorff), Chapter 13, WIT Press, Computational Mechanics Publications, Southampton, Boston 2000.Google Scholar
  44. [44]
    Ochmann, M. VDI-Berichte No. 816 (1990) 801–810 “Calculation of sound radiation from complex machine structures with application to gearboxes”, in German.Google Scholar
  45. [45]
    Ochmann, M., Heckl, M. “Numerical methods in technical acoustics”, Chapter 3, “Taschenbuch der Technischen Akustik”, eds. M. Heckl and H.A. Müller, 2nd Printing, Springer, Berlin, Heidelberg, New York, 1994, in German.Google Scholar
  46. [46]
    Ochmann, M., Homm, A. Acust/Acta Acust 82 (1996, suppl.l) S159 “The source simulation technique for acoustic scattering”Google Scholar
  47. [47]
    Homm, A., Ochmann, M. “Sound scattering of a rigid test cylinder using the source simulation technique for numerical calculations” Proc. 4th Int. Congress on Sound and Vibration, International Scientific Pub., Auburn, pp. 133–138, 1996.Google Scholar
  48. [48]
    Ochmann, M., Homm, A. “Calculation of sound scattering from bodies with variable surface impedance and multiple reflections” Proc. 23rd German Acoustics DAGA Conference, Fortschritte der Akustik, DEGA, Oldenburg, pp. 167–168, 1997, in German.Google Scholar
  49. [49]
    Erez, E., Leviatan, Y. J.Acoust.Soc.Amer. 93 (1993) 3027–3031 “Analysis of scattering from structures containing a variety of length scales using a source-model technique”Google Scholar

Section O.5

  1. [1]
    Schenck, H. A. J.Acoust.Soc.Amer. 44 (1968) 41–58 “Improved integral formulation for acoustic radiation problems”Google Scholar
  2. [2]
    Colton, D., Kress, R. “Integral Equations in Scattering Theory” Wiley-Interscience Publication, New York, 1983.Google Scholar
  3. [3]
    Makarov, A. N., Ochmann, M. J.Acoust.Soc.Amer. 103 (1998) 742–750 “An iterative solver of the Helmholtz integral equation for high-frequency acoustic scattering”Google Scholar
  4. [4]
    Ochmann, M., Wellner, F. Rev.Franc.Mécan., num.spec. (1991) 457–471 “Calculation of sound radiation from complex machine structures using the multipole radiator synthesis and the boundary element multigrid method”Google Scholar
  5. [5]
    Seybert, A. F., SoenarkoB., RIzzo, F. J., Shippy, D. J. J.Acoust.Soc.Amer. 77 (1985) 362–368 “An advanced computational method for radiation and scattering of acoustic waves in three dimensions”Google Scholar
  6. [6]
    Peter, J. “Iterative solution of the direct collocation BEM equations” Proc. 7`h Int. Congr. Sound and Vibration, Garmisch-Partenkirchen, pp. 2077–2084, July 2000.Google Scholar
  7. [7]
    Colton, D., Kress, R. “Inverse Acoustic and Electromagnetic Scattering Theory” Springer, Berlin, Heidelberg, New York, 1992.Google Scholar
  8. [8]
    Angell, T. S., Kleinman, R. E. Math.Meth.in Appl.Sci. 4 (1982) 164–193 “Boundary integral equations for the Helmholtz equation: The third boundary value problem”Google Scholar
  9. [9]
    Kleinman, R. E., Roach, G. F. “Boundary integral equations for the three-dimensional Helmholtz equation” Siam Review, 16, pp. 214–236, 1974.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Rao, S. M., Raju, P. K. J.Acoust.Soc.Amer. 86 (1989) 1143–1148 “Application of the method of moments to acoustic scattering from multiple bodies of arbitrary shape”Google Scholar
  11. [11]
    Chen, L. H., Schweikert, D. G. J.Acoust.Soc.Amer. 35 (1963) 1626–1632 “Sound radiation from an arbitrary body”Google Scholar
  12. [12]
    Schwarz, H. R. “Methode der finiten Elemente” Teubner, Stuttgart, 1980.Google Scholar
  13. [13]
    Marburg, S. Forthcoming in Journ.Computation Acoust “Six elements per wavelength — is that enough?”Google Scholar
  14. [14]
    Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T. “Numerical recipes, the art of scientific computing” Cambridge University Press, Cambridge, 1990.Google Scholar
  15. [15]
    Stummel, F., Hainer, K. “Praktische Mathematik” Teubner, Stuttgart, 1971.Google Scholar
  16. [16]
    Akyol, T. P. Acustica 61 (1986) 200–212 “Schallabstrahlung von Rotationskörpern” Formulas of Acoustics 1019 O. Analytical and Numerical MethodsGoogle Scholar
  17. [17]
    Seybert, A. F., Soenarko B., Rizzo, F. J., Shippy, D. J. J.Acoust.Soc.Amer. 80 (1986) 1241–1247 “A special integral equation formulation for acoustic radiation and scattering for axisymmetric bodies and boundary conditions”Google Scholar
  18. [18]
    Chertock, G. Quart.Appl.Math. 26 (1968) 268–272 “Convergence of iterative solutions to integral equations for sound radiation”Google Scholar
  19. [19]
    Kleinman, R. E., Wendland, W. L. J.Math.Anal.Appl. 57 (1977) 170–202 “On Neumann’s method for the exterior Neumann problem for the Helmholtz equation”Google Scholar
  20. [20]
    Kleinman, R. E., Roach, G. F. Proc.Roy.Soc.Lond., A 417 (1988) 45–57 “Iterative solutions of boundary integral equations in acoustics”Google Scholar
  21. [21]
    Ochmann, M., Homm, A., Semenov, S., Makarov, S. “An iterative GMRES-based solver for acoustic scattering from cylinder-like structures”; will appear in: Proc. 8th Int. Congress on Sound and Vibration (ICSV8), Hong Kong, China, July 2001.Google Scholar
  22. [22]
    Makarov, S., Ochmann, M., Ludwig, R. “Comparison of GMRES and CG iterations on the normal form of magnetic field integral equation”, submitted.Google Scholar
  23. [23]
    Makarov, S., Ochmann, M., Ludwig, R. “An iterative solution for magnetic field integral equation”, submitted.Google Scholar
  24. [24]
    Kupradse, W. D. “Randwertaufgaben der Schwingungstheorie und Integralgleichungen” VEB Deutscher Verlag der Wissenschaften, Berlin, 1956.Google Scholar
  25. [25]
    Smirnov, W. I. “Lehrgang der Höheren Mathematik”, Teil IV, VEB Deutscher Verlag der Wissenschaften, Berlin, 1977.Google Scholar
  26. [26]
    Copley, L. G. J.Acoust.Soc.Amer. 44 (1968) 28–32 “Fundamental results concerning integral representations in acoustic radiation”Google Scholar
  27. [27]
    Rosen, E. M., Canning, X. C., Couchman, L. S. J.Acoust.Soc.Amer. 98 (1995) 599–610 “A sparse integral equation method for acoustic scattering”Google Scholar
  28. [28]
    Stupfel, B., Lavie, A., Decarpigny, J,. N. J.Acoust.Soc.Amer. 83 (1988) 927–941 “Combined integral equation formulation and null-field method for the exterior acoustic problem”Google Scholar
  29. [29]
    Jones, D. S. Q.J. Mech.Appl.Math. 27 (1974) 129–142 “Integral equation for the exterior acoustic problem”Google Scholar
  30. [30]
    Martin, P. A. Q. J. Mech.Appl.Math. 33 (1980) 385–396 “On the null field equations for the exterior problems of acoustics”Google Scholar
  31. [31]
    Colton, D., Kress, R. Q. J. Mech.Appl.Math. 36 (1983) 87–95 “The unique solvability of the null field equations of acoustics”Google Scholar
  32. [32]
    Burton, A. J., Miller, G. F. Proc.Roy.Soc.Lond., A 323 (1971) 201–210 “The application of integral equation methods to the numerical solution of some exterior boundary-value problems”Google Scholar
  33. [33]
    Kress, R., Spassow, W. Numer. Math., 42 (1983) 77–95 “On the condition number of boundary integral operators for the exterior Dirichlet problem for the Helmholtz equation”Google Scholar
  34. [34]
    Ursell, F. Proc.Camb.Phil.Soc., 74 (1973) 117–125 “On the exterior problems of acoustics”Google Scholar
  35. [35]
    Ursell, F. Proc.Camb.Phil.Soc., 84 (1978) 545–548 “On the exterior problems of acoustics: II”Google Scholar
  36. [36]
    Kleinman, R. E., Roach, G. F., Schuetz, L. S., Shirron, J. J.Acoust.Soc.Amer. 84 (1988) 385–391 “An iterative solution to acoustic scattering by rigid objects”Google Scholar
  37. [37]
    Kleinman, R. E., Roach, G. F. Proc.Roy.Soc.Lond., A 383 (1982) 313–323 “On modified Green functions in exterior problems for the Helmholtz equation”Google Scholar
  38. [38]
    Everstine, G. C., Henderson, F. M. J.Acoust.Soc.Amer. 87 (1990) 1938–1947 “Coupled finite element/boundary element approach for fluid-structure interaction”Google Scholar
  39. [39]
    Koopmann, G. H., Benner, H. J.Acoust.Soc.Amer. 71 (1982) 78–89 “Method for computing the sound power of machines based on the Helmholtz integral”Google Scholar
  40. [40]
    Skudrzyk, E. “The foundations of acoustics” Springer, Wien, New York, 1971.CrossRefGoogle Scholar
  41. [41]
    Seybert, A. F., Cheng C. Y. R. J. Vib. Ac. Stress Rel. Design, 109, pp. 15–21, 1987 “Applications of the boundary element method to acoustic cavity response and muffler analysis”Google Scholar
  42. [42]
    Seybert, A. F., Soenarko, B. “Radiation and scattering of acoustic waves from bodies of arbitrary shape in a three-dimensional half space”, ASME Trans. J. Vib. Acoust. Stress Reliab. Design., 110, pp. 112–117, 1988.CrossRefGoogle Scholar
  43. [43]
    Mechel, F. P. “Schallabsorber, Band I: Äußere Schallfelder - Wechselwirkungen” Hirzel, Stuttgart, 1989.Google Scholar
  44. [44]
    Seybert, A. F., Wu, T. W. J.Acoust.Soc.Amer. 85 (1989) 19–23 “Modified Helmholtz integral equation for bodies sitting on an infinite plane”Google Scholar
  45. [45]
    Lam, Y. W., Hodgson, D. C. J.Acoust.Soc.Amer. 88 (1990) 1993–2000 “The prediction of the sound field due to an arbitrary vibrating body in a rectangular enclosure”Google Scholar
  46. [46]
    Morse, P. M., Ingard, K. U. “Theoretical acoustics” McGraw-Hill, New York, 1968, chap. 9, pp. 579–580.Google Scholar
  47. [47]
    Seybert, A. F., Cheng, C. Y. R., Wu, T. W. “The solution of coupled interior/exterior acoustic problems using the boundary element method” J. Acoust. Soc. Amer., 88, pp. 1612–1618, 1990.CrossRefGoogle Scholar
  48. [48]
    Estorff, O. v. (ed.) “Boundary Elements in Acoustics, Advances and Applications, (Advances in Boundary Element Series)” WIT Press, Computational Mechanics Publications, Southampton, Boston, 2000.Google Scholar

Section O.6

  1. [1]
    Gockel, M. A. (ed.) “Handbook for dynamic analysis”, Chap. 7. 3, ( MSC/NASTRAN) Los Angeles: The Mac Neal-Schwendler Corporation, 1983.Google Scholar
  2. [2]
    Schwarz, H. R. „Methode der finiten Elemente“ Stuttgart, Teubner, 1980.Google Scholar
  3. [3]
    Petyt, M. “Finite element techniques for acoustics, Chap. 2 in: Theoretical acoustics and numerical techniques”, (ed. P. Filippi) Wien, New York, Springer, 1983.Google Scholar
  4. [4]
    Petyt, M. “Finite element techniques for structural vibration and acoustics, Chap. 15, 16 in: Noise and vibration”, (ed. R. G. White, J. G. Walker) New York, John Wiley, 1982.Google Scholar
  5. [5]
    Gladwell, G. M. L., Zimmermann, G. J.Sound Vib. 3 (1966) 233–241 “On energy and complementary energy formulations of acoustic and structural vibration problems”Google Scholar
  6. [6]
    Craggs, A. J.Sound Vib. 23 (1972) 331–339 “The use of simple three-dimensional acoustic finite elements for determining the natural modes and frequencies of complex shaped enclosures”Google Scholar
  7. [7]
    Shuku, T., Ishihara, K. J.Sound Vib. 29 (1973) 67–76,. “The analysis of the acoustics field in irregularly shaped rooms by the finite element method” Formulas of Acoustics 1022 0. Analytical and Numerical MethodsGoogle Scholar
  8. [8]
    Petyt, M., Lea, J., Koopmann, G. H. J.Sound Vib. 45 (1976) 495–502 “A finite element method for determining the acoustic modes of irregular shaped cavities”Google Scholar
  9. [9]
    Richards, T. L., Jha, S. K. J.Sound Vib. 63 (1979) 61–72 “A simplified finite element method for studying acoustic characteristics inside a car cavity”Google Scholar
  10. [10]
    Munjal, M. L. “Acoustics of ducts and mufflers” New York, John Wiley, 1987.Google Scholar
  11. [11]
    Schulze Hobbeling, H. Acustica, 67 (1989) 275–283 „Berechnung komplexer Absorptions-/ Reflexions-Schalldämpfer mit Hilfe der FiniteElement-Methode“Google Scholar
  12. [12]
    Soize C. Eur.J. Mech. A/Solids, 17 (1998) 657–685 “Reduced models in the medium frequency range for general dissipative structural-dynamics systems”Google Scholar
  13. [13]
    Soizec. J.Acoust.Soc.Amer. 103 (1998) 3393–3406 “Reduced models in the medium-frequency range for general external structural-acoustic systems”Google Scholar
  14. [14]
    Soize C. J.Acoust.Soc.Amer., 106 (1999) 3362–3374 “Reduced models for structures in the medium-frequency range coupled with internal acoustic cavities”Google Scholar
  15. [15]
    Everstine, G. C., Henderson, F. M. J.Acoust.Soc.Amer. 87 (1990) 1938–1947 “Coupled finite element/boundary element approach for fluid-structure interaction”Google Scholar
  16. [16]
    Smith, R. R., Hunt, J. T., Barach, T. J.Acoust.Soc.Amer. 54 (1973) 1277–1288 “Finite element analysis of acoustically radiating structures with applications to sonar transducers”Google Scholar
  17. [17]
    Hunt, T. J., Knittel, M. R., Barach, D. J.Acoust.Soc.Amer. 55 (1974) 269–280 “Finite element approach to acoustic radiation from elastic structures”Google Scholar
  18. [18]
    Masmoudi, M. Numer. Math., 51 (1987) 87–101 “Numerical solution for exterior problems”Google Scholar
  19. [19]
    Kirsch, A., Monk, P. IMA J.Numer.Anal., 9 (1990) 425–447 “Convergence analysis of a coupled finite element and spectral method in acoustic scattering”Google Scholar
  20. [20]
    Zimmer, H., Ochmann, M., Holzheuer, C. “A finite element approach combined with analytical wave functions for acoustic radiation from elastic structures” Proc. 17th Int. Congress on Acoustics (ICA), Rome, Italy, 2001, to appear. Formulas of Acoustics 1023 O. Analytical and Numerical MethodsGoogle Scholar
  21. [21]
    Gan, H., Levin, P. L., Ludwig, R. J.Acoust.Soc.Amer. 94 (1993) 1651–1662 “Finite element formulation of acoustic scattering phenomena with absorbing boundary condition in the frequency domain”Google Scholar
  22. [22]
    Bayliss, A., Gunzburger, M., Turkel, E. Siam J.Appl.Math. 42 (1982) 430–451 “Boundary conditions for the numerical solution of elliptic equations in exterior regions”Google Scholar
  23. [23]
    Nefske, D. J., Wolf, J. A. JR, Howell, L. J. J.SoundVib. 80 (1982) 247–266 “Structural-acoustic finite element analysis of the automobile passenger compartment: a review of current practice”Google Scholar
  24. [24]
    Craggs, A., Stead, G. Acustica 35 (1976) 89–98 “Sound transmission between enclosures — a study using plate and acoustic finite elements”Google Scholar
  25. [25]
    Becker, P., Waller, H. Acustica 60 (1986) 21–33 „Vergleich der Methoden der Finiten Elemente und der Boundary-Elemente bei der numerischen Berechnung von Schallfeldern“Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • M. Ochmann
  • F. P. Mechel

There are no affiliations available

Personalised recommendations