Skip to main content

Flow Acoustics

  • Chapter
Formulas of Acoustics
  • 1030 Accesses

Abstract

Sound propagation in a flowing medium is treated also in the chapters “J. Duct Acoustics” and “K. Acoustic Mufflers”, but there mostly with simplifying assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to part N. Flow Acoustics

  1. Morfey, C. L. Dictionary of acoustics Academic Press, San Diego etc., 2001

    Google Scholar 

  2. Lauchle, G. C. Fundamentals of flow-induced noise Graduate program in acoustics, Penn State University, 1996

    Google Scholar 

  3. Douglas, J. F. et al. Fluid Mechanics Longman Scientific and Technical, Harlow, Essex, England, 1986

    Google Scholar 

  4. Roger, M. Applied aero-acoustics: prediction methods Lecture Series 1996–04, von Kármán Institute for Fluid Dynamics, Belgium, 1996

    Google Scholar 

  5. Telionis, D. P. Unsteady Viscous Flows Springer-Verlag, New York etc., 1981

    Google Scholar 

  6. Johnson, R. W. (ED.) The Handbook of Fluid Dynamics CRC Press, Boca Raton, FL, Springer-Verlag, Heidelberg, 1998

    Google Scholar 

  7. Schlichting, H. und K. Gersten Grenzschicht-Theorie Springer-Verlag, Berlin etc., 1997

    Google Scholar 

  8. Liu, J. T. C. Contributions to the understanding of large-scale coherent structures in developing free turbulent shear flows. Advances in Applied Mechanics (ed. by J. W. Hutchinson and T. Y. Wu) Vol. 26, Boston etc.: Academic Press, Inc. 1988, pp. 183–309

    Google Scholar 

  9. Hussain, A. K. M. F. and W. C. Reynolds The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41 (1970) 2, 241–258

    Article  Google Scholar 

  10. Reynolds, W. C. and A. K. M. F. Hussain The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 54 (1972) 2, 263–288

    Article  Google Scholar 

  11. Bangalore, A.; P. J. Morris and L. N. Long A parallel three-dimensional computational aeroacoustics method using non-linear disturbance equations. AIAA 96–1728, 2“d AIAA/CEAS Aeroacoustics Conference State College, PA, 1996

    Google Scholar 

  12. Bailly, C.; P. Lafon and S. Candel Computation of noise generation and propagation for free and confined turbulent flows. AIAA 96–1732, 2nd AIAA/CEAS Aeroacoustics Conference, State College, PA, 1996

    Google Scholar 

  13. Lighthill, M. J. On sound generated aerodynamically. Proc. Roy. Soc., London (A), Part I: 211 (1952) 564–587; Part II: 222 (1954) 1–31

    Google Scholar 

  14. Howe, M. S. Acoustics of fluid-structure interactions. University Press, Cambridge, 1998

    Book  MATH  Google Scholar 

  15. Crighton, D. G.; A. P. Dowling, J. E. Ffowcs Williams, M. Heckl and F. G. Leppington Modern methods in analytical acoustics. Springer-Verlag, Berlin etc., 1992

    Book  Google Scholar 

  16. Goldstein, M. E. Aeroacoustics. McGraw-Hill International Book Company, New York etc., 1976

    MATH  Google Scholar 

  17. Curle, N. The influence of solid boundaries upon aerodynamic sound. Proc. Roy. Soc., London (A), 231 (1955) 505–514

    Article  MathSciNet  MATH  Google Scholar 

  18. Ribner, H. S. Aerodynamic sound from fluid dilatations. UTIA-Report No. 86, Toronto, Canada, 1958; J. Acoust. Soc. Am. 31 (1959) 245–246

    Google Scholar 

  19. Meecham, W. C. and G. W. Ford Acoustic radiation from isotropic turbulence. J. Acoust. Soc. Am. 30 (1958) 318–322

    Article  Google Scholar 

  20. Meecham, W. C. Discussion of the pressure-source aerosonic theory and of Doak’s criticism. J. Acoust. Soc. Am. 69 (1981) 3, 643–646

    Google Scholar 

  21. Phillips, O. M. On the generation of sound by supersonic turbulent shear layers. J. Fluid. Mech. 9 (1960) 1–28

    Article  MathSciNet  MATH  Google Scholar 

  22. Pao, S. P. Developments of a generalized theory of jet noise. AIAA Journal 10 (1972) 5, S. 596–602

    Article  Google Scholar 

  23. Lilley, G. M. On the noise from air jets. ronautical Research Council ARC 20376, U. K. 1958

    Google Scholar 

  24. Lilley, G. M. On the refraction of aerodynamic noise. 6th Internat. Congr. on Sound and Vibration, Copenhagen 1999, S. 3581–3588

    Google Scholar 

  25. Legendre, R. Bruits émis par la turbulence. ONERA Publ. 1981–3, 1981

    Google Scholar 

  26. Morfey, C. L. Fundamental problems in aeroacoustics. 7th Internat. Congr. on Sound and Vibration, Garmisch 2000, pp. 59–74

    Google Scholar 

  27. Goldstein, M. E. and W. L. Howes New aspects of subsonic aerodynamic noise theory. NASA TN D-7158

    Google Scholar 

  28. Ribner, H. S. Effects of jet flow on jet noise via an extension to Lighthill model. J. Fluid Mech. 321 (1996) 1–24

    Article  Google Scholar 

  29. Albring, W. Elementarvorgänge fluider Wirbelbewegungen. Akademie-Verlag, Berlin, 1981

    Google Scholar 

  30. Detsch, F. und F. E. Detsch Über die Schallerzeugung in Wirbelfeldern. Dissertation TU Dresden 1976

    Google Scholar 

  31. Dittmar, R. Zum Zusammenhang zwischen Turbulenz-und Schallspektrum. Dissertation TU Dresden 1983

    Google Scholar 

  32. Powell, A. Theory of vortex sound. J. Acoust. Soc. Am. 36 (1964) 1, 177–195

    Google Scholar 

  33. Powell, A. Mechanisms of aerodynamic sound production. AGARD-Report No. 466, 1963

    Google Scholar 

  34. Howe, M. S. Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute. J. Fluid Mech. 71 (1975) 625–673

    Article  MathSciNet  Google Scholar 

  35. Lilley, G. M. On the noise radiated from a turbulent high speed jet. In: Hardin, J. C. and M. Y. Hussaini (Editors): Computational Aeroacoustics. Springer-Verlag, New York etc., 1993, pp. 85–115

    Chapter  Google Scholar 

  36. Möhring, W. On vortex sound at low Mach number. J. Fluid Mech. 85 (1978) 685–691

    Article  MathSciNet  MATH  Google Scholar 

  37. Möhring, W. A well posed acoustic analogy based on a moving acoustic medium. Proceedings 1St Aeroacoustic Workshop (in connection with the German research project SWING) 1999, Dresden

    Google Scholar 

  38. Möhring, W. and F. Obermeier Vorticity — the voice of flows. Proceed. 6th Internat. Congr. on Sound and Vibration, Copenhagen, pp. 3617–3626

    Google Scholar 

  39. Doak, P. E. Fluctuating total enthalpy as a generalized acoustic field. Acoustical Physics 41 (1995) 5, pp. 677–685

    Google Scholar 

  40. Doak, P. E. Fluctuating total enthalpy as the basic generalized acoustic field. Theoret. Comput. Fluid Dynamics (1998) 10, pp. 115–133

    Article  Google Scholar 

  41. Ffowcs Williams, J. E. and D. L. Hawkings Sound generation by turbulence and surfaces in arbitrary motion. Phil. Trans. of the Roy. Soc. London 264 (1969) pp. 321–342

    MATH  Google Scholar 

  42. Farassat, F. The Ffowcs Williams-Hawkings equation — Fifteen years of research. IUTAM Symposium Lyon 1985. Berlin etc.: Springer-Verlag 1986

    Google Scholar 

  43. Prieur, J. and G. Rahier Comparison of Ffowcs Williams-Hawkings and Kirchhoff rotor noise calculations. AIAA 98–2376, pp. 984–994

    Google Scholar 

  44. Long, L. N. and G. A. Watts Arbitrary motion aerodynamics using an aeroacoustic approach. AIAA Journal 25 (1987) 11, pp. 1442–1448

    Google Scholar 

  45. Pilon, A. R. and A. S. Lyrintzis Development of an improved Kirchhoff method for jet aeroacoustics. AIAA Journal 36 (1998) 5, pp. 783–790

    Article  Google Scholar 

  46. Farassat, F. and M. K. Myers Extension of Kirchhoff’s formula to radiation from moving surfaces. J. Sound Vibr. 123 (1988) 3, pp. 451–460

    MathSciNet  Google Scholar 

  47. Brentner, K. S. and F. Farassat Analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces. AIAA Journal 36 (1998) 8, pp. 1379–1386

    Article  Google Scholar 

  48. Brentner, K. S. A superior Kirchhoff method for aeroacoustic noise prediction: The Ffowcs Williams-Hawkings equation. 134th Meeting of the ASA, San Diego, CA 1997

    Google Scholar 

  49. Farassat, F. Acoustic radiation from rotating blades — the Kirchhoff method in aeroacoustics. J. Sound Vibr. 239 (2001) 4, pp. 785–800

    Google Scholar 

  50. Morfey, C. L. Amplification of aerodynamic noise by convected flow inhomogeneities. J. Sound Vibr. 31 (1973) 4, 391–397

    Google Scholar 

  51. Strahle, W. C. Some results in combustion generated noise. J. Sound Vibr. 23 (1972) 1, 113–125

    Google Scholar 

  52. Strahle, W. C. On combustion generated noise. J. Fluid Mech. 49 (1971) 2, 399–414

    Article  Google Scholar 

  53. Strahle, W. C. Convergence of theory and experiment in direct combustion-generated noise. AIAA-Paper 75–522, 2“d Aeroacoustic Conference, Hampton, Va., 1975

    Google Scholar 

  54. Boineau, PH.; Y. Gervais and M. Toquard Application of combustion noise calculation model to several burners. AIAA-Paper 98–2271, 4th Aeroacoustic Conference, Toulouse, France, 1998

    Google Scholar 

  55. Perrey-Debain, E.; P. Boineau and Y. Gervais A numerical study of refraction effects in combustion-generated noise. Proceed. 6th Internat. Congr. on Sound and Vibration, Copenhagen, pp. 3361–3368

    Google Scholar 

  56. Crighton, D. G. and J. E. Ffowcs Williams Sound generation by turbulent two-phase flow. J. Fluid Mech. 36 (1969) 3, pp. 585–603

    Article  Google Scholar 

  57. Lowson, M. V. The sound field for singularities in motion. Proc. Roy. Soc., London (A) 286 (1965) pp. 559–572

    Article  MathSciNet  Google Scholar 

  58. Tanna, H. K. and C. L. Morfey Sound radiation from point sources in circular motion. J. Sound Vibr. 16 (1971) 3, pp. 337–348

    Google Scholar 

  59. Morfey, C. L. and H. K. Tanna Sound radiation from a point force in circular motion. J. Sound Vibr. 15 (1971) 3, pp. 325–351

    Google Scholar 

  60. Tanna, H. K. Sound radiation from point acoustic stresses in circular motion. J. Sound Vibr. 16 (1971) 3, pp. 349–363

    Google Scholar 

  61. Ianniello, S. Quadrupole noise predictions through the Ffowcs Williams-Hawkings equation. AIAA Journal 37 (1999) 9, pp. 1048–1054

    Article  Google Scholar 

  62. Lyrintzis, A. S. Modelling of turbulent mixing noise. Application to subsonic and supersonic jet noise. Lecture Series 1997–07, von Kârmân Institute for Fluid Dynamics, Belgium, 1997

    Google Scholar 

  63. Fuchs, H. V. and A. Michalke Introduction to aerodynamic noise theory. In: Progress in Aerospace Sciences, Vol. 14 (1973) pp. 227–297

    Google Scholar 

  64. Ribner, H. S. Quadrupole correlations governing the pattern of jet noise. J. Fluid Mech. 38 (1969) 1, 1–24

    Article  Google Scholar 

  65. Goldstein, M. E. and W. L. Howes New aspects of subsonic aerodynamic noise theory. NASA TN D-7158, 1973

    Google Scholar 

  66. Béchara, W.; P. Lafon and C. Bailly Application of a k — E —turbulence model to the prediction of noise for simple and coaxial free jets. J. Acoust. Soc. Am. 97 (1995) 6, 3518–3531

    Google Scholar 

  67. Goldstein, M. E. and B. Rosenbaum Effect of anisotropic turbulence on aerodynamic noise. J. Acoust. Soc. Amer. 54 (1973) 3, 630–645

    Article  Google Scholar 

  68. Heckl, M. Strömungsgeräusche. Fortschr.-Ber. VDI-Z. Reihe 7, Nr. 20. Düsseldorf: VDI-Verlag 1969

    Google Scholar 

  69. Ffowcs Williams, J. E. and D. L. Hawkings Theory relating to the noise of rotating machinery. J. Sound Vibr. 10 (1969) 1, 10–21

    Google Scholar 

  70. Lowson, M. V. Theoretical analysis of compressor noise. J. Acoust. Soc. Amer. 47 (1970) 1 (2), 371–385

    Google Scholar 

  71. Farassat, F. and K. S. Brentner The acoustic analogy and the prediction of the noise of rotating blades. Theoret. Comput. Fluid Dynamics (1998) 10, pp. 155–170

    Article  MATH  Google Scholar 

  72. Singer, B. A.; K. S. Brentner, D. P. Lockard and G. M. Lilley Simulation of acoustic scattering from a trailing edge. AIAA 99–0231, 37th Aerospace Sciences Meeting and Exhibit Reno 1999

    Google Scholar 

  73. Ffowcs Williams, J. E. Hydrodynamic noise. Annual Review of Fluid Mechanics 1 (1969) 197–222

    Article  Google Scholar 

  74. Költzsch, P. Beitrag zur Berechnung des Wirbellärms von Axialventilatoren. In: Ventilatoren (Herausgeber: L. Bommes, J. Fricke, K. Klaes), Vulkan-Verlag, Essen, 1994, S. 434–453

    Google Scholar 

  75. Költzsch, P. Strömungsmechanisch erzeugter Lärm. Dissertation B (Habilitationsschrift), Technische Universität Dresden, 1974

    Google Scholar 

  76. Költzsch, P. Berechnung der Schallleistung von axialen Strömungsmaschinen. (Calculation of sound power of axial flow machines.) Freiberger Forschungshefte A 721, Deutscher Verlag für Grundstoffindustrie, Leipzig, 1986

    Google Scholar 

  77. KöLtzsch, P. Wozu werden Ähnlichkeitskennzahlen in der Akustik verwendet? Preprint ET-ITA-01–1998, Technische Universität Dresden, Dresden 1998

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Költzsch, P. (2004). Flow Acoustics. In: Mechel, F.P. (eds) Formulas of Acoustics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07296-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07296-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07298-1

  • Online ISBN: 978-3-662-07296-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics