Skip to main content

Weitere Anwendungsmöglichkeiten der aktiven Steuerungstechnologie

  • Chapter
Flugmechanik

Part of the book series: Hochschultext ((HST))

  • 117 Accesses

Zusammenfassung

Die aktive Steuerungstechnologie bietet weitere Anwendungsmöglichkeiten, die zur Verbesserung der Flugleistungen, der Flugeigenschaften oder der Manövrierbarkeit sowie zur Ausweitung des Flugbereichs geeignet sind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alford, W.J.,Jr.: Advanced Aerodynamics and Active Controls Technology. NASA-CP-2036, Teil II, S. 523–531, 1978.

    Google Scholar 

  2. Allison, R.L.; Perkin, B.R.; Schoenman, R.L: Application of Winglets and/or Wing Tip Extensions with Active Load Control on the Boeing 747. NASA-CP-2036, Teil II, S. 625–646, 1978.

    Google Scholar 

  3. Anders, H.: Untersuchungen zur Integration aktiver Steuerelemente in das Hochauftriebssystem eines Transporterflügels zur Manöver-, Böenlast-und direkten Auftriebssteuerung. Deutscher Luft-und Raumfahrt-Kongreß, DGLR-Nr. 78–111, 1978.

    Google Scholar 

  4. Anderson, C.A.: F–16 Multi–National Fighter. AGARD–AG–234, S. 4–1–4–15, 1978.

    Google Scholar 

  5. Anderson, D.C.; Berger, R.L.; Hess, J.R.,Jr.: Maneuver Load Control and Relaxed Static Stability Applied to a Contemporary Fighter Aircraft. Journal of Aircraft, Band 10, S. 112–120, 1973.

    Google Scholar 

  6. Arnold, J.I., Murphy, F.B.: B-52 Control Configured Vehicles: Flight Test Results. NASA TM X-3409, S. 75–89, 1976.

    Google Scholar 

  7. Beh, H.; Korte, U.; Löbert, G.: Stability and Control Aspects of the CCV–F104G. AGARD–CP–260, S. 17–1–17–18, 1979.

    Google Scholar 

  8. Brüning, G.; Hafer, X.: Flugleistungen. Berlin, Heidelberg, New York: Springer 1978.

    Google Scholar 

  9. Buchstaller, M.; Schröder, J.; Wüst, P.; Wünnenberg, H.: Böenabminderungssystem nach dem Prinzip der offenen Steuerkette. DornierBericht 77/8/B, 1977.

    Google Scholar 

  10. Buckner, J.K.; Hill, P.W.; Benepe, D.: Aerodynamic Design Evolution of the YF-16. AIAA Paper Nr. 74–935, 1974.

    Google Scholar 

  11. Burcham, W.F.,Jr.: Propulsion–Flight Control Integration Technology. AGARD–AG–234, S. 7–1–7–9, 1978.

    Google Scholar 

  12. Burns, B.R.A.: Control–Configured Combat Aircraft. AGARD–AG–234, S. 3–1–3–17, 1978.

    Google Scholar 

  13. Burns, B.R.A.: Active Controls for Combat Aircraft. In: VKI Lecture Series on “Active Control Technology”, Von Karman Institute for Fluid Dynamics, Brüssel, 1978.

    Google Scholar 

  14. Butter, V.; Krag, B.: Manöverlaststeuerung und Böenerleichterung -Auslegung und Anwendungsmöglichkeiten. DGLR-Symposium “CCV-Technologien”, DGLR-Nr. 76–240, 1976.

    Google Scholar 

  15. Clevelend, F.A.: Size Effects in Conventional Aircraft Design. Journal of Aircraft, Band 7, S. 483–512, 1970.

    Google Scholar 

  16. Conner, D.W.; Thompson, G.O.: Potential Benefits to Short–Haul Transports through Use of Active Controls. AGARD–CP–157, S. 3–1–3–10, 1975.

    Google Scholar 

  17. Deets, D.A.; Crother, C.A.: Highly Maneuverable Aircraft Technology. AGARD–AG–234, S. 6–1–6–14, 1978.

    Google Scholar 

  18. Disney, T.E.: C–5A Load Alleviation. AGARD–AG–234, S. 10–1–10–16, 1978.

    Google Scholar 

  19. Duc, J.M.: La conception des Aeronefs utilizant de controle automatique generalise. AGARD–AG–234, S. 1–1–1–6, 1978.

    Google Scholar 

  20. Doggett, R.V.,Jr.; Abel, I.; Ruhlin, C.L.: Some Experiences Using Wind-Tunnel Models in Active Control Studies. NASA-TM-X-3409, S. 831–892, 1976.

    Google Scholar 

  21. Försching, H.W.: Grundlagen der Aeroelastik. Berlin, Heidelberg, New York: Springer 1974.

    Google Scholar 

  22. Grosser, W.F.; Hollenbeck, W.W.; Eckhard, D.C.: The C–5A Active Lift Distribution Control System. AGARD–CP–157, S. 24–1–24–18, 1975.

    Google Scholar 

  23. Hafer, X.: Flugeigenschaftsprobleme zukünftiger Transportflugzeugentwicklungen. 13. Otto-Lilienthal-Vorlesung, Paris, 1972, in: Jahrbuch der DGLR, S. 27–50, 1972, und in: L’Aeronautique et l’Astronautique, Nr: 43, S. 37–52, 1973, (französische Fassung).

    Google Scholar 

  24. Hafer, X.: Störanfälligkeit von Uberschalljägern bei symmetrischem Flugzustand. Bericht Nr. 111–228 der Firma Heinkel-Flugzeugbau v. 11.6.1957, auszugsweise veröffentlicht im Lueger Lexikon der Technik, Band 12, S. 95, 1967.

    Google Scholar 

  25. Hargrove, W.J.: The C-5A Active Lift Distribution Control System. NASA-TM-X-3409, S. 325–351, 1976.

    Google Scholar 

  26. Harris, R.B.; Rickard, W.W.: Active–Control Design Criteria. AGARD–AG–234, S. 2–1–2–13, 1978.

    Google Scholar 

  27. Hartmann, G.L.; Stein, G.; Szalai, K.J.; Brown, S.R.; Petersen, K.L.: F–8 Active Control. AGARD–AG–234, S. 5–1–5–28, 1978.

    Google Scholar 

  28. Herbst, W.: Advancements in Future Fighter Aircraft. AGARD–CP–147, S. 25–1–25–7, 1974.

    Google Scholar 

  29. Hilbig, R.; Körner, H.: Aerodynamische Entwicklungsrichtungen für Verkehrsflugzeuge. DGLR–Jahrbuch, S. 82–1–82–52, 1984.

    Google Scholar 

  30. Holloway, R.B.; Shomber, H.A.: Establishing Confidence in CCV/ACT Technology. NASA-TM-X-3409, S. 661–674, 1976.

    Google Scholar 

  31. Holloway, R.B.: Introduction of CCV Technology into Airplane Design. AGARD–CP–147, S. 23–1–23–16, 1974.

    Google Scholar 

  32. Holloway, R.B.; Burris, P.M.; Johannes, R.P.: Aircraft Performance Benefits from Modern Control Systems Technology. Journal of Aircraft, Band 7, S. 550–553, 1970.

    Google Scholar 

  33. Hood, R.V.: A Summary of the Application of Active Controls Technology in the ATT System Studies. NASA-TM-X-3409, S. 603–637, 1976.

    Google Scholar 

  34. Hood, R.V., Jr.: The Aircraft Energy Efficiency Active Controls Technology Program. AIAA Paper Nr. 77–1076, 1977.

    Google Scholar 

  35. Hoy, J.M.; Arnold, J.M.: Active Controls Technology to Maximize Structural Efficiency. NASA-CP-2036, Teil II, S. 709–732, 1978.

    Google Scholar 

  36. Hunt, G.H.: The Evolution of Fly-by-Wire Control Techniques in the UK. The Aeronautical Journal, Band 83, S. 165–174, 1979.

    Google Scholar 

  37. Jenny, R.B.; Krachmalnick, F.M.; La Favor, S.A.: Air Superiority with Control Configured Fighters. Journal of Aircraft, Band 9, S. 370–377, 1972.

    Google Scholar 

  38. Johannes, R.P.; Whitmoyer, R.A.: AFFDL Experience in Active Control Technology. AGARD–CPP–262, S. 10–1–10–20, 1979.

    Google Scholar 

  39. Johnston, J.F.; Urie, D.M.: Development and Flight Evaluation of Active Controls in the L-1011. NASA-CP-2036, Teil II, S. 647–685, 1978.

    Google Scholar 

  40. Kehrer, W.T.: The Performance Benefits Derived for the Supersonic Transport through a New Approach to Stability Augmentation. AIAA Paper Nr. 71–785, 1971.

    Google Scholar 

  41. Kissel, G.K.: Flugmechanische und regelungstechnische Gesichtspunkte für Flugzeuge künstlicher Stabilität. DLR Mitt. 72–05, S. 187–197, 1972.

    Google Scholar 

  42. Kleinberg, J.M.: Technology for Aircraft Energy Efficiency. International Air Transportation Conference, Proceedings, American Society of Civil Engineers, S. 127–171, 1977.

    Google Scholar 

  43. Kubbat, W.: Regelungstechnische Aspekte eines Flugzeugs künstlicher Stabilität (CCV) unter besonderer Berücksichtigung der Manöverlaststeuerung. DLR Mitt. 74–11, S. 7–32, 1974.

    Google Scholar 

  44. Kubbat, W.; Sensburg, O.: Recent Developments in Active Control Technology. AIAA Paper Nr. 79–0708, 1978.

    Google Scholar 

  45. Kujawski, B.T.; Jenkins, J.E.; Eckholdt, D.C.: Longitudinal Analysis of Two CCV Design Concepts. AIAA Paper Nr. 71–786, 1971.

    Google Scholar 

  46. Kujawski, B.T.: Control Configured Vehicles B–52 Program Results. AGARD–CP–157, S. 14–1–14–8, 1975.

    Google Scholar 

  47. Kurzhals, P.R.: System Implications of Active Controls. AGARD–CP–260, S. 1–1–1–16, 1979.

    Google Scholar 

  48. Löbert, G.: Reglergestützter Flugzeugentwurf. DGLR-Jahrestagung, DGLR-Nr. 72–094, 1972.

    Google Scholar 

  49. Löbert, G.: Möglichkeiten und Lösungsansätze der CCV-Technologie. DGLR-Symposium “CCV-Technologien”, DGLR-Nr. 76–236, 1976

    Google Scholar 

  50. Melling, R.: Active Control Technology – A Military Aircraft Designer’s Viewpoint. AGARD–CP–157, S. 7–1–7–16, 1975.

    Google Scholar 

  51. Newberry, C.F.: Design Freedom Offered by Fly-by-Wire. SAE Paper Nr. 751044, 1975.

    Google Scholar 

  52. Pasley, L.H.; Rohling, W.J.; Wattman, W.J.: Compatibility of Maneuver Load Control and Relaxed Static Stability. AIAA Paper Nr. 73–791, 1973.

    Google Scholar 

  53. Patierno, J.: YF-17 Design Concepts. AIAA Paper Nr. 74–336, 1974.

    Google Scholar 

  54. Pinsker, W.J.G.: Active Control as an Integral Tool in Advanced Aircraft Design. AGARD–CP–157, S. 2–1–2–12, 1975.

    Google Scholar 

  55. Pinsker, W.J.G.: The Flying Qualities of Aircraft with Augmented Longitudinal and Directional Stability. In: VKI Lecture Series on “Active Control Technology”, Von Karman Institute for Fluid Dynamics, Brüssel, 1978.

    Google Scholar 

  56. Poisson-Quinton, Ph.: Energy Conservation Aircraft Design and Operational Procedures. ONERA TP Nr. 1978–107 (AGARD-LS-96), 1978.

    Google Scholar 

  57. Poisson-Quinton, Ph.: Aerodynamic Controls for CCV. Aircraft. In: VKI Lecture Series on “Active Control Technology”, Von Karman Institute for Fluid Dynamics, Brüssel, 1978.

    Google Scholar 

  58. Poisson-Quinton, Ph.; Wanner, J.-G.: Evolution de 1a conception des avions grâce aux commandes automatiques généralisées. L’Aeronautique et l’Astronautique, Nr. 71, S. 11–41, 1978.

    Google Scholar 

  59. Poisson-Quinton, Ph.: Technologies pour le transport aérien de demain. ICARE, Paris, Heft 72, S. 81–100, 1975.

    Google Scholar 

  60. Pratt, K.G.: A Survey of Active Controls Benefits to Supersonic Transports. NASA-TM-X-3409, S. 639–659, 1976.

    Google Scholar 

  61. Schlichting, H.; Truckenbrodt, E.: Aerodynamik des Flugzeugs. 2. Band, Berlin, Heidelberg, New York: Springer 1969.

    Chapter  Google Scholar 

  62. Schoenmann, R.L.; Shomber, H.A.: Impact of Active Controls on Future Transport Design, Performance, and Operation. SAE Paper Nr. 751051, 1975.

    Google Scholar 

  63. Siewert, R.F.; Whitehead, R.E.: Analysis of Advanced Variable Camber Concepts. AGARD–CP–241, S. 14–1–14–21, 1978.

    Google Scholar 

  64. Simpson, A.; Hitch, H.P.Y.: Active Control Technology. The Aeronautical Journal, Band 81, S. 231–246, 1977.

    Google Scholar 

  65. Stauffer, W.A.; Foss, R.L.; Lewolt, J.G.: Fuel Conservative Subsonic Transport. AGARD–AG–234, S. 9–1–9–13, 1978.

    Google Scholar 

  66. Stone, R.W., Jr.; Polhamus, E.C.: Some Effects of Shed Vortices on the Flow Fields around Stabilizing Tail Surfaces. AGARD Rep. 108, 1957.

    Google Scholar 

  67. Taylor, B.A.: Advanced Aerodynamics and Active Controls for a Next Generation Transport. NASA-CP-2036, Teil II, S. 687–708, 1978.

    Google Scholar 

  68. Titriga, A.,Jr.; Ackerman, J.S.; Skow, A.M.: Design Technology for Departure Resistance of Fighter Aircraft. AGARD–CP–199, S. 5–1–5–14, 1976.

    Google Scholar 

  69. Wanner, J.-C.: Le concept CCV..L’Aeronautique et l’Astronautique, Band 5, S. 7–15, 1975.

    Google Scholar 

  70. Wanner, J.–C specifications. AGARD–CP–147, S. 22–1–22–6, 1975.

    Google Scholar 

  71. Wanner, J.-C.: Une nouvelle façon de concevoir les avions: Les techniques “C.C.V.” ou “C.A.G”. Revue de la Défense Nationale, S. 117–136, Mai 1977.

    Google Scholar 

  72. White, R.J.: Improving the Airplane Efficiency by Use of Wing Maneuver Load Alleviation. Journal of Aircraft, Band 8, S. 769775, 1971.

    Google Scholar 

  73. Williams, P.R.G.; Campion, B.S.: Impact of Active Control Technology on Aircraft Design. AGARD–CP–157, S. 5–1–5–6, 1975.

    Google Scholar 

  74. Woodcock, R.J.; George, F.L.: Handling Qualities Requirements for Control Configured Vehicles. NASA-TM-X-3409, S. 735–746, 1976.

    Google Scholar 

  75. Wykes, J.H.; Borland, C.J.: B–1 Ride Control. AGARD–AG–234, S. 11–1–11–15, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hafer, X., Sachs, G. (1987). Weitere Anwendungsmöglichkeiten der aktiven Steuerungstechnologie. In: Flugmechanik. Hochschultext. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07261-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07261-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18345-7

  • Online ISBN: 978-3-662-07261-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics