Skip to main content

Flugabschnitte

  • Chapter
Flugleistungen

Part of the book series: Hochschultext ((HST))

  • 348 Accesses

Zusammenfassung

Ein Flug (eine Flugmission) setzt sich aus verschiedenen Flugabschnitten zusammen, Bild 3.1.1. Wichtige Flugabschnitte sind:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Aggarval, R.; Calise, A.J.; Goldstein, F.: Singular Perturbation Analysis of Optimal Flight Profiles for Transport Aircraft. JACC Conference, San Francisco, Kalifornien, Juni 1977.

    Google Scholar 

  2. Ashkenas, I.L.: Range Performance of Turbojet Airplanes. Journal of the Aeronautical Sciences, Band 15, S. 97–101, 1948.

    Google Scholar 

  3. Barman, J.F.; Erzberger, H.: Fixed-Range Optimum Trajectories for Short-Haul Aircraft. Journal of Aircraft, Band 13, S. 748–754, 1976.

    Google Scholar 

  4. Bert, C.W.: Prediction of Range and Endurance of Jet Aircraft at Constant Altitude. Journal of Aircraft, Band 18, S. 890–892, 1981.

    Google Scholar 

  5. Breakwell, J.V.; Shoee, H.: Minimum Fuel Flight Paths for Given Range. AIAA Paper Nr. 80–1660, 1980.

    Google Scholar 

  6. Burrows, J. W.: Fuel Optimal Trajectory Computation. Journal of Aircraft, Band 19, S. 324–329, 1982.

    Google Scholar 

  7. Burrows, J.W.: Fuel-Optimal Aircraft Trajectories with Fixed Arrival Times. Journal of Guidance, Control, and Dynamics, Band 6, S. 14–19, 1983.

    Google Scholar 

  8. Erzberger, H.; McLean, J.D.; Barman, J.F.: Fixed-Range Optimum Trajectories for Short-Haul Aircraft. NA. SA TN D-8115, 1975.

    Google Scholar 

  9. Erzberger, H.; Lee, H.Q.: Characteristics of Constrained Optimum Trajectories with Specified Range. NASA. TM 78519, 1978.

    Google Scholar 

  10. Erzberger,H.; Lee, H.: Constrained Optimum Trajectories with Specified Range, Journal of Guidance and Control, Band 3, S. 78–85, 1980.

    Google Scholar 

  11. Faber, B.: Kostenoptimale Stratosphärenflüge als geschlossenes Ergebnis einer Variationsrechnung. Zeitschrift für Flugwissenschaften, Band 23, S. 346–356, 1975.

    Google Scholar 

  12. Faber, B.: Optimierung quasistationärer Streckenflüge bei unterschiedlichen Flugführungsvorschriften nach einem weitgehend idealisierten Modell. Dissertation D 17, Fachbereich Maschinenbau, TH Darmstadt, 1977

    Google Scholar 

  13. Gilbert, E.G.: Vehicle Cruise: Improved Fuel Economy by Periodic Control. Automatica, Band 12, S. 159–166, 1976.

    Article  MATH  Google Scholar 

  14. Gilbert, E.G.; Parsons, M.G.: Periodic Control and the Optimality of Aircraft Cruise. Journal of Aircraft, Band 13, S. 828–830, 1976.

    Google Scholar 

  15. Gilbert, E.G.; Lyons, D.T.: Improved aircraft cruise by periodic control: the computation of optimal specific range trajectories. Proc. of 1980 Conf. Info. Sci. Syst., Princeton University, 1980.

    Google Scholar 

  16. Hale, F.J.; Steiger, A..R.: Effects of Wind on Aircraft Cruise Performance. Journal of Aircraft, Band 16, S. 382–387, 1979.

    Google Scholar 

  17. Hedrick, J.K.; Nichols, M.A.: Sensitivity of Suboptimal Fixed-Range Flight Paths. Journal of Aircraft, Band 12, S. 994–996, 1975.

    Google Scholar 

  18. Holmes, B.J.: Benefits of Cruise Design Optimization for High-Performance, Single-Engine Airplanes. Journal of Aircraft, Band 19, S. 257–263, 1982.

    Google Scholar 

  19. Houlihan, S.C.; Cliff, E.M.; Kelley, H.J.: Study of Chattering Cruise. Journal of Aircraft, Band 19, S. 119–124, 1982.

    Google Scholar 

  20. Körte, M.: Nutzlast und Treibstoffreserve in Abhängigkeit von der Ankunftswahrscheinlichkeit im Uberschallflugverkehr. Diss. D 17, TH Darmstadt, 1974.

    Google Scholar 

  21. Large, E.: Minimum Fuel Paths for a Subsonic Aircraft. Journal of Aircraft, Band 18, S. 410–414, 1981.

    Google Scholar 

  22. Lee, H.Q.; Erzberger, H.: Algorithm for Fixed-Range Optimal Trajectories. NASA. Technical Paper 1565, 1980.

    Google Scholar 

  23. Lyons, D.T.: Improved Aircraft Cruise by Periodic Control. Ph.D. dissertation, The University of Michigan, 1980.

    Google Scholar 

  24. Page, R.K.: Range and Radius of Action Performance Prediction. AGARD-LS-49, 1972.

    Google Scholar 

  25. Peckham, D.H.: Range performance in cruising flight. RAE Technical Report 73164, 1973.

    Google Scholar 

  26. Sachs, G.: Verringerung des Treibstoffverbrauchs durch periodische Optimalflugbahnen. DGLR–Jahrbuch, S. 090–1–090–17, 1984.

    Google Scholar 

  27. Sachs, G.: Flugzeitsteigerung durch zyklisch gesteuerten dynamischen Dauerflug. Zeitschrift für Flugwissenschaften und Weltraumforschung, Band 9, S. 42–52, 1985.

    MathSciNet  Google Scholar 

  28. Schultz, R.L.; Zagalsky, N.R.: Aircraft Performance Optimization. Journal of Aircraft, Band 9, S. 108–114, 1972.

    Google Scholar 

  29. Schultz, R.L.: Fuel Optimality of Cruise. Journal of Aircraft, Band 11, S. 586–587, 1974.

    Google Scholar 

  30. Sorensen, J.A.; Waters, M.H.: Airborne Method to Minimize Fuel with Fixed Time-of-Arrival Constraints. Journal of Guidance and Control, Band 4, S. 348–349, 1981.

    Google Scholar 

  31. Speyer, J.L.: On the Fuel Optimality of Cruise. Journal of Aircraft, Band 10, S. 763–765, 1973.

    Google Scholar 

  32. Speyer, J.L.: Nonoptimality of the Steady-State Cruise for Aircraft. AIAA Journal, Band 14, S. 1604–1610, 1976.

    MATH  Google Scholar 

  33. Speyer, J.L.; Dannemiller, D.; Walker, D.: Periodic Optimal Cruise of a Hypersonic Vehicle. AIAA Paper Nr. 80–1777, 1980.

    Google Scholar 

  34. Speyer, J.L.; Dannemiller, D.; Walker, D.: Periodic Optimal Control of an Atmospheric Vehicle. Collection of Papers of the 25th Israel Annual Conference on Aviation and Astronautics, S. 245–255, 1983.

    Google Scholar 

  35. Speyer, J.L.; Dannemiller, D.; Walker, D.: Periodic Optimal Cruise of an Atmospheric Vehicle. Journal of Guidance, Control, and Dynamics, Band 8, S. 31–38, 1985.

    MATH  Google Scholar 

  36. Teren, F.; Daniele, C.J.: Optimal Cruise Trajectories for Supersonic Airplanes. NASA TN D - 6707, 1972.

    Google Scholar 

  37. Torenbeek, E.; Wittenberg, H.: Generalized Maximum Specific Range Performance. Journal of Aircraft, Band 20, S. 617–622, 1983.

    Google Scholar 

  38. Torenbeek, E.: Some Fundamental Aspects of Transport Aircraft Conceptual Design Optimization. A.GARD–CP–280, S. 5–1–5–22, 1980.

    Google Scholar 

  39. Torenbeek, E.: Fundamentals of Conceptual Design Optimization of Subsonic Transport Aircraft. Delft University of Technology, Department of Aerospace Engineering, Report LR-292, 1980.

    Google Scholar 

  40. Vinh, N.X.: Optimum Cruise Performance. AFFDL-TR-78–131, 1978.

    Google Scholar 

  41. Wagner, O.: Der Einfluß der Schubrichtung auf den Horizontalflug von Leichtflugzeugen. Zeitschrift für Flugwissenschaften und Weltraumforschung, Band 4, S. 162–168, 1980.

    Google Scholar 

  42. Wauer, J.C.; Bruckner, J.M.H.; Humphrey, C.H.: Airplane Performance Sensitivities to Lateral and Vertical Profiles. Journal of Guidance and Control, Band 4, S. 606–613, 1981.

    Google Scholar 

  43. Zagalsky, N.R.; Irons, R.P.,Jr.; Schultz, R.L.: Energy State Approximation and Minimum-Fuel Fixed-Range Trajectories. Journal of Aircraft, Band 8, S. 488–490, 1971.

    Google Scholar 

  44. Airbus Industrie AI/CSP 04.40, 1980.

    Google Scholar 

  45. Airbus Industrie AI/CSP 04.63, 1981.

    Google Scholar 

  46. Ardema, M.D.: Approximations in the Minimum Time-to-Climb Problem. NASA TM X - 62292, 1973.

    Google Scholar 

  47. Ardema, M.D.: Solutions of the Minimum Time-to-Climb Problem by Matched Asymptotic Expansions. AIAA Journal, Band 14, S. 843–850, 1976.

    MATH  Google Scholar 

  48. Breakwell, J.V.: Optimal Flight-Path-Angle Transitions in Minimum-Time Airplane Climbs. Journal of Aircraft, Band 14, S. 782–786, 1977.

    Google Scholar 

  49. Breakwell, J.V.: More about Flight-Path-Angle Transitions in Optimal Airplane Climbs. Journal of Guidance and Control, Band 1, S. 205–208, 1978.

    Google Scholar 

  50. Faber, B.: Erkennungskriterium und Erzeugung leicht lösbarer Modelle für flugmechanische Optimierungsprobleme. Technische Hochschule Darmstadt, Institut für Flugtechnik, IFD-Bericht Nr. 9 /76, 1976.

    Google Scholar 

  51. Falco, M.; Kelley, H.J.: Aircraft Symmetric Flight Optimization. Control and Dynamic Systems, Band 10, S. 89–129, 1973.

    MathSciNet  Google Scholar 

  52. Glaros, L.N.: Optimal Switching Criteria for Two-Position Configuration Controls. Journal of Spacecraft, Band 14, S. 124–125, 1977.

    Google Scholar 

  53. Hargraves, C.; Johnson, F.; Paris, S.; Rettie, I.: Numerical Computation of Optimal Atmospheric Trajecories. Journal of Guidance and Control, Band 4, S. 406–414, 1981.

    MATH  Google Scholar 

  54. Nichols, M.A.; Hedrick, J.K.: Minimum Time and Minimum Fuel Flight Path Sensitivity. Journal of Aircraft, Band 11, S. 320–325, 1974.

    Google Scholar 

  55. Rader, J.E.; Hull, D.G.: Computation of Optimal Aircraft Trajectories Using Parameter Optimization Methods. Journal of Aircraft, Band 12, S. 864–866, 1975.

    Google Scholar 

  56. Thomasson, F.Y.; Cook, G.: Comparison of Constant Lift-Coefficient Climbs with Flight-Manual for a Jet Transport. Journal of Aircraft, Band 8, S. 810–811, 1971.

    Google Scholar 

  57. Zagalsky, N.R.: Aircraft Energy Management. A.IAA Paper Nr. 73–228, 1973.

    Google Scholar 

  58. Anderson, C.M.; Othling, W.L.,Jr.: Optimal Trajectories for High-Thrust Aircraft. Journal of Aircraft, Band 13, S. 180–184, 1976.

    Google Scholar 

  59. Blank, D.; Shinar, J.: Efficient Combinations of Numerical Techniques Applied for Aircraft Turning Performance Optimization. Journal of Guidance and Control, Band 5, S. 124–130, 1982.

    MATH  Google Scholar 

  60. Erzberger, H.; Lee, H.Q.: Optimum Horizontal Guidance Techniques for Aircraft. Journal of Aircraft, Band 8, S. 95–101, 1971.

    Google Scholar 

  61. Hedrick, J.K.; Bryson, A.E., Jr.: Minimum Time Turns for a Supersonic Air- plane at Constant Altitude. Journal of Aircraft, Band 8, S. 182–187, 1971.

    Google Scholar 

  62. Hedrick, J.K.; Bryson, A.E., Jr.: Three-Dimensional, Minimum-Time Turns for a Supersonic Aircraft. Journal of Aircraft, Band 9, S. 115–121, 1972.

    Google Scholar 

  63. Hedrick, J.K.; Bryson, A.E., Jr.: Three-Dimensional, Minimum Fuel Turns for a Supersonic Aircraft. Journal of Aircraft, Band 9, S. 223–229, 1972.

    Google Scholar 

  64. Johnson, T.L.; Rader, J.E.: Minimum Time Turns with Thrust Reversal. AIAA Paper Nr. 80–1595, 1980.

    Google Scholar 

  65. Kelley, H.J.: Energy Climbs, Energy Turns, and Asymptotic Expansions. Journal of Aircraft, Band 7, S. 93–95, 1970.

    Google Scholar 

  66. Kelley, H.J.; Lefton, L.: Supersonic Aircraft Energy Turns. Automatica, Band 8, S. 575–580, 1972.

    Article  Google Scholar 

  67. Arelley, H.J.; Lefton, L.: Differential Turns. AIAA Journal, Band 11, S. 858–861, 1973.

    Google Scholar 

  68. Kelley, H.J.: Differential-Turning Optimality Criteria. Journal of Aircraft, Band 12, S. 41–44, 1975

    Google Scholar 

  69. Grémont, J.: L’atterrissage et le problème du freinage. Document E.P.N.E.R., Ecole du Personnel Navi gant d’Essais et de Réception, Centre d’Essais en Vol, Istres, 1978.

    Google Scholar 

  70. Halem, H.v.; Szablewski: Wasserschleppversuche mit einem Modell der NACA.-40-Reihe. Jahrbuch der Deutschen Luftfahrtforschung, S.I 383–388, 1939

    Google Scholar 

  71. Hawks, R.J.: Take-Off Ground Roll of Propeller Driven Aircraft. Journal of Aircraft, Band 19, S. 92–93, 1982.

    Google Scholar 

  72. Heffley, R.K.: Closed-Loop Analysis of Manual Flare and Landing. Journal of Aircraft, Band 13, S. 83–88, 1976.

    Google Scholar 

  73. Hueber: Startrechnung für Flugschiff Do 214(P93) mit Vergleichswerten Do X, Do 24 und Do 26. Dornier-Mitteilung T 201–302, 1938.

    Google Scholar 

  74. Jurzig, W.: Probleme bei Start und Landung auf nasser Bahn. Deutsche Lufthansa, OR-3 Studie, 1968.

    Google Scholar 

  75. Klug, H.G.: Einfluß von Lufttüchtigkeitsvorschriften auf die Start-und Landeleistungen von QSTOL-Flugzeugen. DGLR-Jahrestagung 1972, DGLR-Nr. 72–056, 1972.

    Google Scholar 

  76. Kriechbaum, G.K.L.; Spintzyk, J.: Development and Flight Testing of a New Amphibian Technology Demonstrator. ICAS Proceedings, S. 249–261, 1984.

    Google Scholar 

  77. Perry, D.H.: An analysis of some major factors involved in normal take-off performance. Aeronautical Research Council CP Nr. 1043, 1969.

    Google Scholar 

  78. Perry, D.H.: A. review of methods for estimating the airfield performance of conventional fixed-wing aircraft. RAE Tech. Memo Aero 1264, 1970.

    Google Scholar 

  79. Perry, D.H.: A First Order Analysis of Landing Performance based on Current British Civil Airworthiness Requirements. RAE Technical Memorandum Aero 1232, 1970.

    Google Scholar 

  80. Powers, S.A.: Critical Field Length Calculation for Preliminary Design. Journal of Aircraft, Band 18, S. 103–107, 1981.

    Google Scholar 

  81. Ransone, R.K.: STOL Definition and Field Length Criteria. AIAA Paper Nr. 70–1240, 1970.

    Google Scholar 

  82. Seckel, E.: The Landing Flare: An Analysis and Flight-Test Investigation. NASA. CR-2517, 1975.

    Google Scholar 

  83. Sivaramakrishnan, M.M.: Influence of Landing Gear Flexibility on Aircraft Performance During Ground Roll. Journal of Aircraft, Band 18, S. 991–992, 1981.

    Google Scholar 

  84. Sottorf, W.: Gestaltung von Schwimmwerken. Jahrbuch der Deutschen Luftfahrtforschung, S. I 309–319, 1937.

    Google Scholar 

  85. Sottorf, W.: Analyse experimenteller Untersuchungen über den Gleitvorgang an der Wasseroberfläche. Jahrbuch der Deutschen Luftfahrtforschung, S. I 320–339, 1937.

    Google Scholar 

  86. Sottorf, W.: Neues Verfahren der Übertragung des Modellwiderstandes eines Gleitfahrzeuges auf die Hauptausführung. Luftfahrtforschung, Band XVI, S. 412–418, 1939.

    Google Scholar 

  87. Sottorf, W.: Systematische Modelluntersuchung über den tauchstampffreien Stabilitätsbereich des DVL-Einheitsschwimmers. Jahrbuch der Deutschen Luftfahrtforschung, S. I 451–466, 1942.

    Google Scholar 

  88. Stickle, J.W.: An Investigation of Landing-Contact Conditions for several Turbojets Transport during Routine Daylight Operations at New York International Airport. NASA TND 1483, 1962.

    Google Scholar 

  89. Wahi, M.K.: Application of Dimensional Analysis to Predict Airplane Stopping Distance. Journal of Aircraft, Band 14, S. 209–214, 1977.

    Google Scholar 

  90. Wortman, A.: Comment on “Critical Field Length Calculations for Preliminary Design”. Journal of Aircraft, Band 19, S 255–256, 1982.

    Google Scholar 

  91. Yager, J.T.: A. Comparison of Aircraft and Ground Vehicle Stopping Performance on Dry, Wet, Flooded, Slush, Snow and Ice-Covered Runways. NASA. TN D-6098, 1970.

    Google Scholar 

  92. Luftfahrtbundesamt: Lufttüchtigkeitsforderungen ab 1965.

    Google Scholar 

  93. Luftfahrtbundesamt: AGARD-CP-160, Take-Off and Landing, 1975.

    Google Scholar 

  94. Rex, D.F.: World Survey of Climatologie, Vol. 4: Climate of the Free Atmosphere. Amsterdam - London - New York: Elsevier Publishing Comp. 1969.

    Google Scholar 

  95. Ardema, M.D.: Singular Perturbations in Flight Mechanics. NASA TM X - 62, 380, 1974.

    Google Scholar 

  96. Calise, A.J.: Singular Perturbation Methods for Variational Problems in Aircraft Flight. IEEE Transactions on Automatic Control, Band AC-21, S. 345–353, 1976.

    Google Scholar 

  97. Calise, A.J.: Extended Energy Management Methods for Flight Performance Optimization. AIAA. Journal, Band 15, S. 314–321, 1977.

    MathSciNet  Google Scholar 

  98. Calise, A.J.: Singular Perturbation Techniques for On-Line Optimal Flight-Path Control. Journal of Guidance, Control, and Dynamics, Band 4, S. 398–405, 1981.

    MATH  Google Scholar 

  99. Kelley, H.J.: Flight Path Optimization with Multiple Time Scales. Journal of Aircraft, Band 8, S. 238–240, 1971.

    Google Scholar 

  100. Kelley, H.J.: Reduced-Order Modeling in Aircraft Mission Analysis. AIAA Journal, Band 9, S. 349–350, 1971.

    Google Scholar 

  101. Kelley, H.J.: Aircraft Maneuver Optimization by Reduced-Order Approximization. Control and Dynamic Systems, Band 10, S. 131–178, 1973.

    MathSciNet  Google Scholar 

  102. Krotov, V.F.; Bukreev, V.Z.; Gurman, V.I.: New Variational Methods in Flight Dynamics. NASA TTF-657, 1971.

    Google Scholar 

  103. Vinh, N.X.: Optimal Singular Control With Applications to Trajectory Optimization. NASA. CR 3087, 1979.

    Google Scholar 

  104. Anderson, J.D., Jr.: Introduction to Flight. New York: McGraw-Hill 1978.

    Google Scholar 

  105. Dommasch, D.O.; Sherby, S.S.; Connolly, T.F.: Airplane Aerodynamics. New York - Toronto - London: Pitman 1967.

    Google Scholar 

  106. George, L.; Vernet, J.-F.: La mécanique du vol - Performances des avions et des engins. Paris und Liège: Libraire Polytechnique Ch. Béranger 1960.

    MATH  Google Scholar 

  107. Hafer, X.; Sachs, G.: Senkrechtstarttechnik - Flugmechanik, Aerodynamik, Antriebssysteme. Berlin, Heidelberg, New York: Springer 1982.

    Google Scholar 

  108. Kohlman, D.L.: Introduction to V/STOL Airplanes. Ames: Iowa State University Press 1981.

    Google Scholar 

  109. Lan, C.E.; Roskam, J.: Airplane Aerodynamics and Performance. Ottawa, Kansas: Roskam Aviation and Engineering Corporation 1981.

    Google Scholar 

  110. McCormick, B.W.: Aerodynamics, Aeronautics, and Flight Mechanics. New York, Chichester, Brisbane, Toronto: John Wiley & Sons 1979.

    Google Scholar 

  111. Miele, A.: Flight Mechanics. Band I, Theory of Flight Paths. Reading, Massachusetts, Palo Alto, London: Addison-Wesley Publ. Comp., Pergamon Press 1962.

    Google Scholar 

  112. Miller, L.E.; Koch, P.G.: Aircraft Flight Performance Methods. Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio, AFFDL-TR-75–89, 1975.

    Google Scholar 

  113. Politt, W.: Start - Flug - Landung - Flugleistung. Braunschweig - Berlin: Richard Carl Schmidt & Co 1962.

    Google Scholar 

  114. Roskam, J.; Kohlman, D.L.: An Assessment of Performance, Stability, and Control Improvements for General Aviation Aircraft. Society of Automotive Engineers, SAE-Paper Nr. 700240, 1970.

    Google Scholar 

  115. Shkadov, L.M.; Bukhanova, R.S.; Illarionov, V.F.; Plokhikh, V.P.: Mechanics of Optimum Three-Dimensional Motion of Aircraft in the Atmosphere. NASA.-TT-F-777, 1975.

    Google Scholar 

  116. Smetana, F.O.; Summey, D.C.; Johnson, W.D.: Point and Path Performance of Light Aircraft. NASA. CR-2272, 1973.

    Google Scholar 

  117. Stümke, H.: Grundzüge der Flugmechanik und Ballistik. Braunschweig: Friedrich Vieweg 1969.

    Book  Google Scholar 

  118. Thomas, F.: Grundlagen für den Entwurf von Segelflugzeugen. Stuttgart: Motorbuch Verlag 1979.

    Google Scholar 

  119. Torenbeek, E.: Synthesis of subsonic airplane design. Delft University Press 1976.

    Google Scholar 

  120. Vinh, N.X.: Optimal Trajectories in Atmospheric Flight. Amsterdam - Oxford - New York: Elsevier 1981.

    Google Scholar 

  121. Williams, J. (Herausgeber): Aircraft Performance - Prediction Methods and Optimization. AGARD-LS-56, 1973.

    Google Scholar 

  122. Williams, J. AGARD-CP-242, Performance Predicion Methods, 1978.

    Google Scholar 

  123. Williams, J. Engineering Sciences Data Unit (ESDU), Royal Aeronautical Society: Aeronautical Series, Performance Sub-Series.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brüning, G., Hafer, X., Sachs, G. (1986). Flugabschnitte. In: Flugleistungen. Hochschultext. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07259-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07259-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16982-6

  • Online ISBN: 978-3-662-07259-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics