• K. Kubitzki
Part of the The Families and Genera of Vascular Plants book series (FAMILIES GENERA, volume 6)


Trees or shrubs (rhizomatous halfshrubs). Hairs simple, unicellular. Leaves alternate or opposite, simple, entire (dentate), exstipulate. Inflorescences many-flowered thyrso-panicles, heads, or few-flowered cymes; flowers hermaphrodite to unisexual, actinomorphic, epigynous, mostly 4- or 5-merous; calyx adnate to ovary with 4–5(–10) lobes or teeth or obsolete; petals free (basally connate), imbricate or valvate, reduced or lacking in pistillate flowers; stamens as many as and alternating with petals, or in 2 isomerous whorls (in 1 whorl of up to 40 stamens), mostly attached to or around the edge of an epigynous nectary disk (lacking in Davidia); filaments free; anthers bithecate, dehiscing longitudinally; pistil 1–2(–9)locular; style with lobed or capitate stigma, or with 2–3 style branches; ovary inferior, with 1 pendulous ovule per locule; ovules anatropous (hemitropous), unitegmic and crassinucellate (Nyssa and red-fruited Cornus tenuinucellate). Fruits drupes, often with a germination valve, 1(2–6)-seeded (syncarps); seeds small to medium-sized, exotestal, with straight embryo and copious endosperm.


Ellagic Acid Pollen Morphology Fruit Stone Staminate Flower Pistillate Flower 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Bibliography

  1. Adams, J.E. 1949. Studies in the comparative anatomy of the Cornaceae. J. Elisha Mitchell Soc. 65: 218–244.Google Scholar
  2. APG (Angiosperm Phylogeny Group) 1998. See general references.Google Scholar
  3. Bate-Smith, E.C., Ferguson, I.K., Hutson, K., Jensen, S.R., Nielsen, B.J., Swain, T. 1975. Phytochemical interrelationships in the Cornaceae. Bio chem. Syst. Ecol. 3: 79–89.Google Scholar
  4. Bloembergen, S. 1939. A revision of the genus Alangium. Bull. Jard. Bot. Buitenzorg III, 6: 139–235.Google Scholar
  5. Cannon, J.F.M. 1978. Alangiaceae. In: Launert, E. (ed.) Flora Zambesiaca vol. 4. London: Flora Zambesiaca Managing Committee, pp. 633–635.Google Scholar
  6. Dahlgren, R.M.T. 1980. A revised system of classification of the angiosperms. Bot. J. Linn Soc. 80: 91–124.Google Scholar
  7. Dahlgren, G. 1989. The last Dahlgrenogram. System of classification of the dicotyledons. In: Kit Tan (ed.) Plant taxonomy. The Davis and Hedge Festschrift. Edinburgh: Edinburgh University Press, pp. 249–260.Google Scholar
  8. Eramijan, E.M. 1971. Palynological data on the systematics and phylogeny of Cornaceae Dumort. and related families. In: Kuprianova, L.A., Yakovlev, M.S. (eds.) Pollen morphology of Cucurbitaceae, Thymelaeaceae, Cornaceae. Leningrad: Nauka, pp. 235–273.Google Scholar
  9. Eyde, R.H. 1966. The Nyssaceae of the southeastern United States. J. Arnold Arbor. 47: 117–125.Google Scholar
  10. Eyde, R.H. 1968a. Flowers, fruits, and phylogeny of Alangiaceae. J. Arnold Arbor. 49: 167–192.Google Scholar
  11. Eyde, R.H. 1968b (‘1967’). The peculiar gynoecial vasculature of Cornaceae and its systematic significance. Phytomorphology 17: 172–182.Google Scholar
  12. Eyde, R.H. 1972. Pollen of Alangium: toward a more satisfactory synthesis. Taxon 21: 471–477.CrossRefGoogle Scholar
  13. Eyde, R.H. 1985. The case for monkey-mediated evolution by big-bracted dogwoods. Arnoldia 45: 2–9.Google Scholar
  14. Eyde, R.H. 1988. Comprehending Cornus: puzzles and progress in the systematics of the dogwoods. Bot. Rev. 54: 233–351.Google Scholar
  15. Eyde, R.H. 1997. Fossil record and ecology of Nyssa (Cornaceae). Bot. Rev. 63: 97–123.Google Scholar
  16. Eyde, R.H., Barghoorn, E.S. 1963. Morphological and paleobotanical studies of the Nyssaceae. II. The fossil record. J. Arnold Arbor. 44: 328–376.Google Scholar
  17. Eyde, R.H., Xiang, Q.-Y. 1990. Fossil mastixioid (Cornaceae) alive in eastern Asia. Am. J. Bot. 77: 689–692.Google Scholar
  18. Eyde, R.H., Bartlett, A., Barghoorn, E.S. 1969. Fossil record of Alangium. Bull. Torrey Bot. Club 96: 288–314.Google Scholar
  19. Fan, C., Xiang, Q.-Y. 2001. Phylogenetic relationships within Cornus (Cornaceae) based on 26S rDNA sequences. Am. J. Bot. 88: 1131–1138.Google Scholar
  20. Ferguson, I.K. 1966. The Cornaceae in the southeastern United States. J. Arnold Arbor. 47: 106–116.Google Scholar
  21. Ferguson, I.K. 1977. Cornaceae. World Pollen and Spore Flora 6. Stockholm: Almqvist & Wiksell.Google Scholar
  22. Ferguson, I.K., Hideux, M.J. 1978. Some aspects of the pollen morphology and its taxonomic significance in Cornaceae sens. lat. In: 4th Int. Palyn. Conf., Lucknow, 1976–1977, 1, pp. 240–249.Google Scholar
  23. Goldblatt, P. 1978. A contribution to cytology in Cornales. Ann. Missouri Bot. Gard. 65: 650–655.Google Scholar
  24. Harms, H. 1897. Cornaceae. In: Engler, A., Prantl, K. Die natürlichen Pflanzenfamilien III, 8. Leipzig: W. Engelmann, pp. 250–270.Google Scholar
  25. Hatta, H., Honda, H., Fisher, J.B. 1999. Branching principles governing the architecture of Cornus kousa (Cornaceae). Ann. Bot. 84: 183–193.Google Scholar
  26. Hegnauer, R. 1964, 1989. See general references.Google Scholar
  27. Hill, A.W. 1933. The method of germination of seeds enclosed in a stony endocarp. Ann. Bot. 47: 873–887.Google Scholar
  28. Hook, D.D., Brown, C.L., Kormanik, P.P. 1970. Lenticel and water root development of swamp tupelo under various flooding conditions. Bot. Gaz. 131: 217–224.Google Scholar
  29. Hooker, J.D., 1867. Cornaceae. In: Bentham, G., Hooker, J.D., Genera Plantarum, vol. 1 ( 3 ). London: Reeve & Co, pp. 947–952.Google Scholar
  30. Horne, A.S. 1909. The structure and affinities of Davidia incolucrata, Baill. Trans. Linn. Soc. Lond. II, 7: 303–326, pl. 31–33.Google Scholar
  31. Jahnke, C. 1986. Der Infloreszenzbau der Cornaceen sensu lato und seine systematischen Konsequenzen. Trop. subtrop. Pflanzenwelt 57. Akad. Wiss. Lit. Mainz. Stuttgart: Steiner.Google Scholar
  32. Jensen, S.R. 1991. Plant iridoids, their biosynthesis and distribution in angiosperms. In: Harborne, J.B., Tomas-Barberan, F.A. (eds.) Ecological chemistry and biochemistry of plant terpenoids. Oxford: Clarendon Press, pp. 133–158.Google Scholar
  33. Jensen, S.R., Kjaer, A., Nielsen, B.J. 1975a. The genus Cornus: non-flavonoid glucosides as taxonomic markers. Biochem. Syst. Ecol. 3: 75–78.Google Scholar
  34. Jensen, S.R., Nielsen, B.J., Dahlgren, R. 1975b. Iridoid compounds, their occurrence and systematic importance in the angiosperms. Bot. Not. 128: 148–180.Google Scholar
  35. Johri, B.M. et al. 1992. See general references.Google Scholar
  36. Kostermans, A.J.G.H. 1982. The genus Mastixia Bl. (Cornaceae) in Ceylon. Reinwardtia 10: 81–92.Google Scholar
  37. Mai, D. 1993. On the extinct Mastixiaceae (Cornales) in Europe. Geophytology 23: 53–63.Google Scholar
  38. Manchester, S.R. 2002. Leaves and fruits of Davidia (Cornales) from the Paleocene of North America. Syst. Bot. 27: 368–382.Google Scholar
  39. Manchester, S.R., Crane, P.R., Golovnea, L.B. 1999. An extinct genus with affinities to extant Davidia and Camptotheca (Cornales) from the Paleocene of North America and eastern Asia. Int. J. Plant Sci. 160: 188–207.Google Scholar
  40. Matthew, K.M. 1976. A revision of the genus Mastixia ( Cornaceae ). Blumea 23: 51–93.Google Scholar
  41. Morley, R.J. 1982. Fossil pollen attributable to Alangium Lamarck (Alangiaceae) from the Tertiary of Malesia. Rev. Palaeobot. Palynol. 36: 65–94.Google Scholar
  42. Murrell, Z.E. 1993. Phylogenetic relationships in Cornus (Cornaceae). Syst. Bot. 18: 469–495.Google Scholar
  43. Nakai, T. 1927. Flora Sylvatica Koreana, part X VI, Araliaceae & Cornaceae. Seoul: Forestal Exp. Station.Google Scholar
  44. Noshiro, S., Baas, P. 1998. Systematic wood anatomy of Cornaceae and allies. IAWA J. 19: 43–97.Google Scholar
  45. Reidt, G. 1997. Zur Anatomie der Früchte ausgewählter Cornaceen und einiger möglicher verwandter Gattungen. Inaugural-Dissertation, Nat.-Math. Fakultät, RuprechtKarls-Universität Heidelberg.Google Scholar
  46. Reitsma, T. 1970. Pollen morphology of the Alangiaceae. Rev. Palaeobot. Palynol. 10: 249–332.CrossRefGoogle Scholar
  47. Schneider, C.K. 1912. Illustriertes Handbuch der Laubholzkunde, Vol. 2. Jena: G. Fischer.Google Scholar
  48. Sertorius, A. 1893. Beiträge zur Kenntnis der Anatomie der Cornaceae. Bull. Herb. Boisier 1: 469–484,496–512,551–570, 614–639.Google Scholar
  49. Sohma, K. 1963. Pollen morphology of the Nyssaceae, I. Nyssa and Camptotheca. Sci. Rep. Tohoku Univ. IV (Biol.) 29: 389–392.Google Scholar
  50. Sohma, K. 1967. Pollen morphology of the Nyssaceae, II. Nyssa and Davidia. Sci. Rep. Tohoku Univ. IV (Biol.) 33: 527–532.Google Scholar
  51. Takhtajan, A. 1980. Systema Magnoliophytorum. Leningrad: Nauka (in Russian).Google Scholar
  52. Takhtajan, A. 1997. See general references.Google Scholar
  53. Tandon, S.R., Herr, J.M. Jr. 1971. Embryological features of taxonomic significance in the genus Nyssa. Can. J. Bot. 49: 505–514.Google Scholar
  54. Wen, J., Stuessy, T.F. 1993. The phylogeny and biogeography of Nyssa (Cornaceae). Syst. Bot. 18: 68–79.Google Scholar
  55. Xiang, Q.-Y. 1999. Systematic affinities of Grubbiaceae and Hydrostachyaceae within Cornales - insights from rbcL sequences. Harvard Pap. Bot. 4: 527–542.Google Scholar
  56. Xiang, Q.Y., Soltis, D.E., Morgan, D.R., Soltis, P.S. 1993. Phylogenetic relationships of Cornus L. sensu lato and putative relatives inferred from rbcL sequence data. Ann. Mo. Bot. Gard. 80: 723–734.Google Scholar
  57. Xiang, Q.-Y., Brunsfeld, S.J., Soltis, D.E., Soltis, P.S. 1997. Phylogenetic relationships in Cornus based on chloroplast DNA restriction sites: implications for biogeography and character evolution. Syst.Bot. 21: 515–534.CrossRefGoogle Scholar
  58. Xiang, Q.-Y., Soltis, D.E., Soltis, P.S. 1998. Phylogenetic relationships of Cornaceae and close relatives inferred from matK and rbcL sequences. Am. J. Bot. 85: 285–297.Google Scholar
  59. Xiang, Q.-Y., Moody, M.L., Soltis, D.E., Fan, C.-Z., Soltis, P.S. 2002. Relationships within Cornales and circumscription of Cornaceae - matK and rbcL sequence data and effects of outgroups and long branches. Molec. Phylog. Evol. 24: 35–57.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • K. Kubitzki

There are no affiliations available

Personalised recommendations