Skip to main content

Introduction to Families Treated in This Volume

  • Chapter

Part of the book series: The Families and Genera of Vascular Plants ((FAMILIES GENERA,volume 6))

Abstract

In traditional classifications Celastrales comprised families of usually woody plants with simple leaves, haplostemonous flowers with a disk and apotropous ovules which, in view of this character combination, formed an utterly heterogeneous assemblage. In the classification of Engler and Gilg (1912), for instance, families as divergent as Buxaceae, Rhamnaceae, Aquifoliaceae and Balsaminaceae were dumped into their Sapindales (= Celastrales). In later classifications, most authors gave up this broad circumscription but the Celastrales of Takhtajan (1987), to give just one example, comprised 12 families of which nine, according to our present knowledge, would have to be excluded from this order. In the absence of convincing morphological evidence, only sequ-ence-based phylogenetic studies have led to the recognition of a monophyletic order Celastrales which represents a clade of eurosids I that is sister to Oxalidales + Malpighiales, these three being sister to all remaining eurosids I (Fagales, Rosales, Zygophyllales, Curcurbitales, Fabales; Savolainen, ay et al. 2000; Soltis et al. 2000; APG II 2003). The Celastrales clade comprises only three families, Lepidobotryaceae, Celastraceae s.l. and Parnassi-aceae. The rbcL analysis by Savolainen, Fay et al. (2000) provided strong support for a position of Lepidobotryaceae as sister to the other two families. Parnassiaceae, comprising Parnassiaand Lepuropetalum, have often been included in Saxifragaceae. There exists, however, strong morphological (see Simmons on Parnassiaceae, this volume) and molecular evidence for their exclusion from Saxifragaceae. Various analyses of plastid and nuclear genes (Savolainen, Chase et al. 2000; Soltis et al. 1997, 2000) have resolved Parnassiaceae as sister to Celastraceae. In a multi-gene analysis of Celastraceae (Simmons et al. 2001b), Parnassia and Lepuropetalum have been resolved as members of an early branching but weakly supported lineage of that family, in which they are sister to Perrottetia and Mortonia. The latter two genera, as well as the early-derived Quet-zalia, are somewhat anomalous among Celas-traceae in lacking an aril in favour of a sarcotesta, and partly in possessing scalariform vessel perforations. For the time being it seems therefore justified to retain family status for Parnassiaceae, as suggested by Simmons in his contribution to this volume. As a result of Simmons’ (2001a, 2001b) analysis, Celastraceae are now re-circumscribed to comprise the genera Brexia, Canotia, Plagiopteron, Siphonodon, Stackhousiaceae and Hippocrateaceae, all of which at one time or another had been related to Celastraceae, and all of which have now been shown to be nested within that family.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albach, D.C., Soltis, P.S., Soltis, D.E. 2001a. Patterns of embryological and biochemical evolution in the asterids. Syst. Bot. 26: 242–262.

    Google Scholar 

  • Albach, D.C., Soltis, D.E., Chase, M.W., Soltis, P.S. 2001b. Phylogenetic placement of the enigmatic angiosperm Hydrostachys. Taxon 50: 781–805.

    Article  Google Scholar 

  • Albach, D.C., Soltis, D.E., Soltis, P.S. 2001c. Phylogenetic analysis of the asterids based on sequences of four genes. Ann. Missouri Bot. Gard. 88: 163–210.

    Google Scholar 

  • Anderberg, A.A. 1992. The circumscription of the Ericales and their cladistic relationships to other families of “higher” dicotyledons. Syst. Bot. 17: 660–675.

    Google Scholar 

  • Anderberg,A.A., Stähl, B. 1995. Phylogenetic interrelationships in the order Primulales, with special emphasis on the family circumscription. Can. J. Bot. 73: 1699–1730.

    Google Scholar 

  • Anderberg, A.A., Rydin, C., Källersjö, M. 2002. Phylogenetic relationships in the order Ericales s.l.: analysis from molecular data from five genes from the plastid and mito chondrial genome. Am. J. Bot. 89: 677–687.

    Google Scholar 

  • APG (Angiosperm Phylogeny Group) 1998, 2003. See general references.

    Google Scholar 

  • Artopoeus, A. 1903. Über den Bau und die Öffnungsweise der Antheren und die Entwickelung der Samen der Erikaceen. Flora 92: 309–345.

    Google Scholar 

  • Bate-Smith, E.-C., Swain, T. 1966. The asperulosides and the aucubins. In: Swain, T. (ed.) Comparative phytochemistry. London: Academic Press, pp. 159–174.

    Google Scholar 

  • Behnke, H.-D. 1982. Sieve element plastids of Connaraceae and Oxalidaceae. Bot. Jahrb. Syst. 103: 1–8.

    Google Scholar 

  • Berry, P.E., Savolainen, V., Sytsma, K.J., Hall, J.C., Chase, M.W. 2001. Lissocarpus is sister to Diospyros ( Ebenaceae ). Kew Bull. 56: 725–729.

    Google Scholar 

  • Bradford, J.C., Barnes, R.W. 2001. Phylogenetics and classification of Cunoniaceae (Oxalidales) using chloroplast DNA sequences and morphology. Syst. Bot. 26: 354–385.

    Google Scholar 

  • Chase, M.W. et al. 1993. See general references.

    Google Scholar 

  • Corner, E.J.H. 1976. See general references.

    Google Scholar 

  • Dahlgren, R. 1975. A system of classification of the angiosperms to be used to demonstrate the distribution of characters. Bot. Notiser 128: 119–147.

    Google Scholar 

  • Dahlgren, R. 1983. General aspects of angiosperm evolution and macrosystematics. Nord. J. Bot. 3: 119–149.

    Google Scholar 

  • Dahlgren, G. 1991. Steps toward a natural system of the dicotyledons: embryological characters. Aliso 13: 107–165.

    Google Scholar 

  • Dahlgren, R.M.T., Rosendahl-Jensen, S., Nielsen, B.J. 1981. A revised classification of the angiosperms with comments on correlation between chemical and other characters. In: Young, D.A., Seigler, D.S. (eds.) Phytochemistry and angiosperm phylogeny. New York: Praeger, pp. 149–204.

    Google Scholar 

  • Engler, A., Gilg, E. 1912. Syllabus der Pflanzenfamilien, 7th edn. Berlin: Borntraeger.

    Google Scholar 

  • Eyde, R.H. 1988. Comprehending Cornus: puzzles and progress in the systematics of the dogwoods. Bot. Rev. 54: 233–351.

    Google Scholar 

  • Hegnauer, R. 1966. Aucubinartige Glycoside. Über die Verbreitung und Bedeutung als systematisches Merkmal. Pharm. Acta Helv. 41: 577–587.

    Google Scholar 

  • Hermann, P.M., Palser, B.F. 2000. Stamen development in Ericaceae. I. Anther wall, microsporogenesis, inversion, and appendices. Am. J. Bot. 87: 934–957.

    Google Scholar 

  • Huber, H. Die Verwandtschaftsverhältnisse der Rosifioren. Mitt. Bot. Staatssamml. München 5: 1–48.

    Google Scholar 

  • Huber, H. 1991. Angiospermen. Leitfaden durch die Ordnungen und Familien der Bedecktsamer. Stuttgart: Fischer.

    Google Scholar 

  • Hufford, L. 1992. Rosidae and their relationships to other nonmagnoliid dicotyledons: a phylogenetic analysis using morphological and chemical data. Ann. Missouri Bot. Gard. 79: 218–248.

    Article  Google Scholar 

  • Källersjö, M., Bergqvist, G., Anderberg, A.A. 2000. Generic realignments in primuloid families of the Ericales s.l.: a phylogenetic analysis based on DNA sequences from three chloroplast genes and morphology. Am. J. Bot. 87: 1325–1341.

    Google Scholar 

  • Kooiman, P. 1969. The occurrence of asperulosidic glycosides in the Rubiaceae. Acta Bot. Neerl. 18: 124–137.

    CAS  Google Scholar 

  • Leins, P., Erbar, C. 1985. Ein Beitrag zur Blütenentwicklung der Aristolochiaceen, einer Vermittlergruppe zu den Monokotylen. Bot. Jahr. Syst. 107: 343–368.

    Google Scholar 

  • Lindenhofer, A., Weber, A. 1999a. Polyandry in Rosaceae: evidence for a spiral origin of the androecium in Spiraeoideae. Bot. Jahrb. Syst. 121: 553–582.

    Google Scholar 

  • Lindenhofer, A., Weber, A. 1999b. The spiraeoid androecium of Pyroideae and Amygdaloideae (Rosaceae). Bot. Jahrb. Syst. 121: 583–605.

    Google Scholar 

  • Lindenhofer, A., Weber, A. 2000. Structural and developmental diversity of the androecium of Rosoideae (Rosaceae). Bot. Jahrb. Syst. 122: 63–91.

    Google Scholar 

  • Matthews, M.L., Endress, P.K. 2002. Comparative floral structure and systematics in Oxalidales (Oxalidaceae, Connaraceae, Brunelliaceae, Cephalotaceae, Cunoniaceae, Elaeocarpaceae, Tremandraceae). Bot. J. Linn. Soc. 140: 321–381.

    Google Scholar 

  • Matthews, J.R., Taylor, G. 1926. The structure and development of the stamen in Erica hirtiflora. Trans. Bot. Soc. Edinburgh 29: 235–242.

    Google Scholar 

  • Morton, C.M. et al. 1996. See general references.

    Google Scholar 

  • Morton, C.M., Mori, S.A., Prance, G.T., Karol, K.G., Chase, M.W. 1997. Phylogenetic relationships of Lecythidaceae: a cladistic analysis using rbcL sequence and morphological data. Am. J. Bot. 84: 530–540.

    Google Scholar 

  • Nandi, 0.I. 1998. See general references.

    Google Scholar 

  • Nash, G.V. 1903. A revision of the family Fouquieriaceae. Bull. Torrey Bot. Club 30: 449–459.

    Article  Google Scholar 

  • Netolitzky, F. 1926. Anatomie der AngiospermenSamen. Handbuch der Pflanzenanatomie, Band 10. Berlin: Borntraeger.

    Google Scholar 

  • Oever, L. van den, Baas, P., Zandee, M. et al. 1981. Comparative wood anatomy of Symplocos and latitude and altitude. IAWA Bull. n.s. 2: 3–24.

    Google Scholar 

  • Olmstead, R.G., Michaelis, H.J., Scott, K.M., Palmer, J.D. 1992. Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of rbcL. Ann. Missouri Bot. Gard. 79: 249–265.

    Google Scholar 

  • Qiu, Y.-L., Chase, M.W., Hoot, S.B., Conti, E., Crane, P.R., Sytsma, K.J., Parks, C.R. 1998. Phylogenetics of the Hamamelidae and their allies: parsimony analyses of nucleotide sequences of the plastid gene rbcL. Int. J. Pl. Sci. 159: 891–905.

    Google Scholar 

  • Savolainen, V., Chase, M.W. et al. 2000. See general references. Savolainen, V., Fay, M.F. et al. 2000. See general references.

    Google Scholar 

  • Simmons, M.P., Clevinger, C.C., Savolainen, V., Archer, R.H., Mathews, S., Doyle, J.J. 2001a. Phylogeny of Celastraceae

    Google Scholar 

  • inferred from phytochrome B and morphology. Am. J. Bot. 88: 313–325.

    Google Scholar 

  • Simmons, M.P., Savolainen, V., Clevinger, C.C., Archer, R.H., Davis, J.I. 200 lb. Phylogeny of the Celastraceae inferred from 26 SnrDNA, phytochrome B, atpB, rbcL, and morphology. Molec. Phylo. Evol. 19: 353–366.

    Google Scholar 

  • Soltis, D.E., Soltis, P.S., Morgan, D.R., Swensen, B.C., Mullin, B.C., Dowd, J.M., Martin, P.G. 1995. Chloroplast gene sequence data suggests a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl. Acad. Sci. USA 92: 2647–2651.

    Google Scholar 

  • Soltis, D.E. et al. 1997, 2000. See general references.

    Google Scholar 

  • Stevens, P.F. 1971. A classification of the Ericaceae: subfamilies and tribes. Bot. J. Linn. Soc. 64: 1–53.

    Google Scholar 

  • Stevens, P.F. 2003. Angiosperm phylogeny website, v. Jan 2003. http://www.mobot.org/mobot/research APweb/.

    Google Scholar 

  • Sytsma, K.J., Morawetz, J., Pires, J.C., Nepokroeff, M., Conti, E., Zihra, M., Hall, J.C., Chase, M.W. 2002. Urticalean rosids: circumscription, rosid ancestry, and phylogenetics based on rbcL, trnL-F, and ndhF sequences. Am. J. Bot. 89: 1531–1546.

    Google Scholar 

  • Takhtajan, A. 1959. Die Evolution der Angiospermen. Jena: G. Fischer.

    Google Scholar 

  • Takhtajan, A. 1987. Systema Magnoliophytorum. Leningrad: Nauka (in Russian).

    Google Scholar 

  • Thulin, M., Bremer, B., Richardson, J., Niklasson, J., Fay, M.F., Chase, M.W. 1998. Family relationships of the enigmatic genera Barbeya and Dirachma from the Horn of Africa region. Plant Syst. Evol. 213: 103–119.

    Google Scholar 

  • Xiang, Q.-Y. 1999. Systematic affinities of Grubbiaceae and Hydrostachyaceae within Cornales - insights from rbcL sequences. Harvard Pap. Bot. 4: 527–542.

    Google Scholar 

  • Xiang, Q.-Y., Soltis, S.E., Soltis, P.S. 1998. Phylogenetic relationships of Cornaceae and close relatives inferred from matK and rbcL sequences. Am. J. Bot. 85: 285–297.

    Google Scholar 

  • Xiang, Q.-Y., Moody, M.L., Soltis, D.E., Fan, C.-Z., Soltis, P.S. 2002. Relationships within Cornales and circumscription of Cornaceae - matK and rbcL sequence data and effects of outgroups and long branches. Molec. Phylog. Evol. 24: 35–57.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kubitzki, K. (2004). Introduction to Families Treated in This Volume. In: Kubitzki, K. (eds) Flowering Plants · Dicotyledons. The Families and Genera of Vascular Plants, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07257-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07257-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05714-4

  • Online ISBN: 978-3-662-07257-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics