Introduction to Families Treated in This Volume

  • K. Kubitzki
Part of the The Families and Genera of Vascular Plants book series (FAMILIES GENERA, volume 6)


In traditional classifications Celastrales comprised families of usually woody plants with simple leaves, haplostemonous flowers with a disk and apotropous ovules which, in view of this character combination, formed an utterly heterogeneous assemblage. In the classification of Engler and Gilg (1912), for instance, families as divergent as Buxaceae, Rhamnaceae, Aquifoliaceae and Balsaminaceae were dumped into their Sapindales (= Celastrales). In later classifications, most authors gave up this broad circumscription but the Celastrales of Takhtajan (1987), to give just one example, comprised 12 families of which nine, according to our present knowledge, would have to be excluded from this order. In the absence of convincing morphological evidence, only sequ-ence-based phylogenetic studies have led to the recognition of a monophyletic order Celastrales which represents a clade of eurosids I that is sister to Oxalidales + Malpighiales, these three being sister to all remaining eurosids I (Fagales, Rosales, Zygophyllales, Curcurbitales, Fabales; Savolainen, ay et al. 2000; Soltis et al. 2000; APG II 2003). The Celastrales clade comprises only three families, Lepidobotryaceae, Celastraceae s.l. and Parnassi-aceae. The rbcL analysis by Savolainen, Fay et al. (2000) provided strong support for a position of Lepidobotryaceae as sister to the other two families. Parnassiaceae, comprising Parnassiaand Lepuropetalum, have often been included in Saxifragaceae. There exists, however, strong morphological (see Simmons on Parnassiaceae, this volume) and molecular evidence for their exclusion from Saxifragaceae. Various analyses of plastid and nuclear genes (Savolainen, Chase et al. 2000; Soltis et al. 1997, 2000) have resolved Parnassiaceae as sister to Celastraceae. In a multi-gene analysis of Celastraceae (Simmons et al. 2001b), Parnassia and Lepuropetalum have been resolved as members of an early branching but weakly supported lineage of that family, in which they are sister to Perrottetia and Mortonia. The latter two genera, as well as the early-derived Quet-zalia, are somewhat anomalous among Celas-traceae in lacking an aril in favour of a sarcotesta, and partly in possessing scalariform vessel perforations. For the time being it seems therefore justified to retain family status for Parnassiaceae, as suggested by Simmons in his contribution to this volume. As a result of Simmons’ (2001a, 2001b) analysis, Celastraceae are now re-circumscribed to comprise the genera Brexia, Canotia, Plagiopteron, Siphonodon, Stackhousiaceae and Hippocrateaceae, all of which at one time or another had been related to Celastraceae, and all of which have now been shown to be nested within that family.


Seed Coat Condensed Tannin Ellagic Acid Vessel Element rbcL Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albach, D.C., Soltis, P.S., Soltis, D.E. 2001a. Patterns of embryological and biochemical evolution in the asterids. Syst. Bot. 26: 242–262.Google Scholar
  2. Albach, D.C., Soltis, D.E., Chase, M.W., Soltis, P.S. 2001b. Phylogenetic placement of the enigmatic angiosperm Hydrostachys. Taxon 50: 781–805.CrossRefGoogle Scholar
  3. Albach, D.C., Soltis, D.E., Soltis, P.S. 2001c. Phylogenetic analysis of the asterids based on sequences of four genes. Ann. Missouri Bot. Gard. 88: 163–210.Google Scholar
  4. Anderberg, A.A. 1992. The circumscription of the Ericales and their cladistic relationships to other families of “higher” dicotyledons. Syst. Bot. 17: 660–675.Google Scholar
  5. Anderberg,A.A., Stähl, B. 1995. Phylogenetic interrelationships in the order Primulales, with special emphasis on the family circumscription. Can. J. Bot. 73: 1699–1730.Google Scholar
  6. Anderberg, A.A., Rydin, C., Källersjö, M. 2002. Phylogenetic relationships in the order Ericales s.l.: analysis from molecular data from five genes from the plastid and mito chondrial genome. Am. J. Bot. 89: 677–687.Google Scholar
  7. APG (Angiosperm Phylogeny Group) 1998, 2003. See general references.Google Scholar
  8. Artopoeus, A. 1903. Über den Bau und die Öffnungsweise der Antheren und die Entwickelung der Samen der Erikaceen. Flora 92: 309–345.Google Scholar
  9. Bate-Smith, E.-C., Swain, T. 1966. The asperulosides and the aucubins. In: Swain, T. (ed.) Comparative phytochemistry. London: Academic Press, pp. 159–174.Google Scholar
  10. Behnke, H.-D. 1982. Sieve element plastids of Connaraceae and Oxalidaceae. Bot. Jahrb. Syst. 103: 1–8.Google Scholar
  11. Berry, P.E., Savolainen, V., Sytsma, K.J., Hall, J.C., Chase, M.W. 2001. Lissocarpus is sister to Diospyros ( Ebenaceae ). Kew Bull. 56: 725–729.Google Scholar
  12. Bradford, J.C., Barnes, R.W. 2001. Phylogenetics and classification of Cunoniaceae (Oxalidales) using chloroplast DNA sequences and morphology. Syst. Bot. 26: 354–385.Google Scholar
  13. Chase, M.W. et al. 1993. See general references.Google Scholar
  14. Corner, E.J.H. 1976. See general references.Google Scholar
  15. Dahlgren, R. 1975. A system of classification of the angiosperms to be used to demonstrate the distribution of characters. Bot. Notiser 128: 119–147.Google Scholar
  16. Dahlgren, R. 1983. General aspects of angiosperm evolution and macrosystematics. Nord. J. Bot. 3: 119–149.Google Scholar
  17. Dahlgren, G. 1991. Steps toward a natural system of the dicotyledons: embryological characters. Aliso 13: 107–165.Google Scholar
  18. Dahlgren, R.M.T., Rosendahl-Jensen, S., Nielsen, B.J. 1981. A revised classification of the angiosperms with comments on correlation between chemical and other characters. In: Young, D.A., Seigler, D.S. (eds.) Phytochemistry and angiosperm phylogeny. New York: Praeger, pp. 149–204.Google Scholar
  19. Engler, A., Gilg, E. 1912. Syllabus der Pflanzenfamilien, 7th edn. Berlin: Borntraeger.Google Scholar
  20. Eyde, R.H. 1988. Comprehending Cornus: puzzles and progress in the systematics of the dogwoods. Bot. Rev. 54: 233–351.Google Scholar
  21. Hegnauer, R. 1966. Aucubinartige Glycoside. Über die Verbreitung und Bedeutung als systematisches Merkmal. Pharm. Acta Helv. 41: 577–587.Google Scholar
  22. Hermann, P.M., Palser, B.F. 2000. Stamen development in Ericaceae. I. Anther wall, microsporogenesis, inversion, and appendices. Am. J. Bot. 87: 934–957.Google Scholar
  23. Huber, H. Die Verwandtschaftsverhältnisse der Rosifioren. Mitt. Bot. Staatssamml. München 5: 1–48.Google Scholar
  24. Huber, H. 1991. Angiospermen. Leitfaden durch die Ordnungen und Familien der Bedecktsamer. Stuttgart: Fischer.Google Scholar
  25. Hufford, L. 1992. Rosidae and their relationships to other nonmagnoliid dicotyledons: a phylogenetic analysis using morphological and chemical data. Ann. Missouri Bot. Gard. 79: 218–248.CrossRefGoogle Scholar
  26. Källersjö, M., Bergqvist, G., Anderberg, A.A. 2000. Generic realignments in primuloid families of the Ericales s.l.: a phylogenetic analysis based on DNA sequences from three chloroplast genes and morphology. Am. J. Bot. 87: 1325–1341.Google Scholar
  27. Kooiman, P. 1969. The occurrence of asperulosidic glycosides in the Rubiaceae. Acta Bot. Neerl. 18: 124–137.Google Scholar
  28. Leins, P., Erbar, C. 1985. Ein Beitrag zur Blütenentwicklung der Aristolochiaceen, einer Vermittlergruppe zu den Monokotylen. Bot. Jahr. Syst. 107: 343–368.Google Scholar
  29. Lindenhofer, A., Weber, A. 1999a. Polyandry in Rosaceae: evidence for a spiral origin of the androecium in Spiraeoideae. Bot. Jahrb. Syst. 121: 553–582.Google Scholar
  30. Lindenhofer, A., Weber, A. 1999b. The spiraeoid androecium of Pyroideae and Amygdaloideae (Rosaceae). Bot. Jahrb. Syst. 121: 583–605.Google Scholar
  31. Lindenhofer, A., Weber, A. 2000. Structural and developmental diversity of the androecium of Rosoideae (Rosaceae). Bot. Jahrb. Syst. 122: 63–91.Google Scholar
  32. Matthews, M.L., Endress, P.K. 2002. Comparative floral structure and systematics in Oxalidales (Oxalidaceae, Connaraceae, Brunelliaceae, Cephalotaceae, Cunoniaceae, Elaeocarpaceae, Tremandraceae). Bot. J. Linn. Soc. 140: 321–381.Google Scholar
  33. Matthews, J.R., Taylor, G. 1926. The structure and development of the stamen in Erica hirtiflora. Trans. Bot. Soc. Edinburgh 29: 235–242.Google Scholar
  34. Morton, C.M. et al. 1996. See general references.Google Scholar
  35. Morton, C.M., Mori, S.A., Prance, G.T., Karol, K.G., Chase, M.W. 1997. Phylogenetic relationships of Lecythidaceae: a cladistic analysis using rbcL sequence and morphological data. Am. J. Bot. 84: 530–540.Google Scholar
  36. Nandi, 0.I. 1998. See general references.Google Scholar
  37. Nash, G.V. 1903. A revision of the family Fouquieriaceae. Bull. Torrey Bot. Club 30: 449–459.CrossRefGoogle Scholar
  38. Netolitzky, F. 1926. Anatomie der AngiospermenSamen. Handbuch der Pflanzenanatomie, Band 10. Berlin: Borntraeger.Google Scholar
  39. Oever, L. van den, Baas, P., Zandee, M. et al. 1981. Comparative wood anatomy of Symplocos and latitude and altitude. IAWA Bull. n.s. 2: 3–24.Google Scholar
  40. Olmstead, R.G., Michaelis, H.J., Scott, K.M., Palmer, J.D. 1992. Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of rbcL. Ann. Missouri Bot. Gard. 79: 249–265.Google Scholar
  41. Qiu, Y.-L., Chase, M.W., Hoot, S.B., Conti, E., Crane, P.R., Sytsma, K.J., Parks, C.R. 1998. Phylogenetics of the Hamamelidae and their allies: parsimony analyses of nucleotide sequences of the plastid gene rbcL. Int. J. Pl. Sci. 159: 891–905.Google Scholar
  42. Savolainen, V., Chase, M.W. et al. 2000. See general references. Savolainen, V., Fay, M.F. et al. 2000. See general references.Google Scholar
  43. Simmons, M.P., Clevinger, C.C., Savolainen, V., Archer, R.H., Mathews, S., Doyle, J.J. 2001a. Phylogeny of CelastraceaeGoogle Scholar
  44. inferred from phytochrome B and morphology. Am. J. Bot. 88: 313–325.Google Scholar
  45. Simmons, M.P., Savolainen, V., Clevinger, C.C., Archer, R.H., Davis, J.I. 200 lb. Phylogeny of the Celastraceae inferred from 26 SnrDNA, phytochrome B, atpB, rbcL, and morphology. Molec. Phylo. Evol. 19: 353–366.Google Scholar
  46. Soltis, D.E., Soltis, P.S., Morgan, D.R., Swensen, B.C., Mullin, B.C., Dowd, J.M., Martin, P.G. 1995. Chloroplast gene sequence data suggests a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl. Acad. Sci. USA 92: 2647–2651.Google Scholar
  47. Soltis, D.E. et al. 1997, 2000. See general references.Google Scholar
  48. Stevens, P.F. 1971. A classification of the Ericaceae: subfamilies and tribes. Bot. J. Linn. Soc. 64: 1–53.Google Scholar
  49. Stevens, P.F. 2003. Angiosperm phylogeny website, v. Jan 2003. APweb/.Google Scholar
  50. Sytsma, K.J., Morawetz, J., Pires, J.C., Nepokroeff, M., Conti, E., Zihra, M., Hall, J.C., Chase, M.W. 2002. Urticalean rosids: circumscription, rosid ancestry, and phylogenetics based on rbcL, trnL-F, and ndhF sequences. Am. J. Bot. 89: 1531–1546.Google Scholar
  51. Takhtajan, A. 1959. Die Evolution der Angiospermen. Jena: G. Fischer.Google Scholar
  52. Takhtajan, A. 1987. Systema Magnoliophytorum. Leningrad: Nauka (in Russian).Google Scholar
  53. Thulin, M., Bremer, B., Richardson, J., Niklasson, J., Fay, M.F., Chase, M.W. 1998. Family relationships of the enigmatic genera Barbeya and Dirachma from the Horn of Africa region. Plant Syst. Evol. 213: 103–119.Google Scholar
  54. Xiang, Q.-Y. 1999. Systematic affinities of Grubbiaceae and Hydrostachyaceae within Cornales - insights from rbcL sequences. Harvard Pap. Bot. 4: 527–542.Google Scholar
  55. Xiang, Q.-Y., Soltis, S.E., Soltis, P.S. 1998. Phylogenetic relationships of Cornaceae and close relatives inferred from matK and rbcL sequences. Am. J. Bot. 85: 285–297.Google Scholar
  56. Xiang, Q.-Y., Moody, M.L., Soltis, D.E., Fan, C.-Z., Soltis, P.S. 2002. Relationships within Cornales and circumscription of Cornaceae - matK and rbcL sequence data and effects of outgroups and long branches. Molec. Phylog. Evol. 24: 35–57.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • K. Kubitzki

There are no affiliations available

Personalised recommendations