Multimode Modeling and Imaging in Nondestructive Testing

  • K. J. Langenberg
  • R. Marklein
  • K. Mayer
  • H. Wiggenhauser
  • M. Krause
Part of the Springer Proceedings in Physics book series (SPPHY, volume 97)


Linear acoustic and linear elastic waves as well as electromagnetic waves satisfy a system of two partial differential equations of first order in space — R being the vector of position — and time t, the so-called governing equations:


Elastic Wave Reinforce Concrete Nondestructive Test Wave Propagation Simulation Particle Velocity Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marklein R, Mayer K, Hannemann R, Krylow T, Balasubramanian K, Langenberg K J, Schmitz V (2002) Inverse Problems, 18: 1733–1759MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    de Hoop A T (1995) Handbook of Radiation and Scattering of Waves. Academic Press, London.Google Scholar
  3. 3.
    Langenberg K J, Fellinger P, Marklein R, Zanger P, Mayer K, Kreutter T (1993) Inverse Methods and Imaging. In: Achenbach J D (ed) Evaluation of Materials and Structures by Quantitative Ultrasonics. Springer, WienGoogle Scholar
  4. 4.
    Langenberg K J, Brandfaß M, Hannemann R, Hofmann Ch, Kaczorowski T, Kostka J, Marklein R, Mayer K, Pitsch A (1999) Inverse Scattering with Acoustic, Electromagnetic, and Elastic Waves as Applied in Nondestructive Testing. In: Wirgin A (ed) Wavefield Inversion. Springer, Wien.Google Scholar
  5. 5.
    Langenberg K J (1987) Linear scalar inverse scattering. In: Pike R, Sabatier P (eds) Scattering. Academic Press.Google Scholar
  6. 6.
    Belkebir K, Saillard M (eds) (2001) Special Section: Testing Inversion Algorithms Against Experimental Data. Inverse Problems, 17: 1565–1791MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
    Mayer K, Zimmer A, Langenberg K J, Kohl C, Maierhofer C (2003) Nondestructive Evaluation of Embedded Structures in Concrete: Modeling and Imaging. Proc. of the International Symposium on “Non-Destructive Testing in Civil Engineering”, Sept. 16–19, Berlin, GermanyGoogle Scholar
  10. 10.
    Marklein R (2002) The Finite Integration Technique as a General Tool to Compute Acoustic, Electromagnetic, Elastodynamic, and Coupled Wave Fields. In: Stone W R (ed) Review of Radio Science 1999–2002. IEEE Press, PiscatawayGoogle Scholar
  11. 11.
    Fellinger P, Marklein R, Langenberg K J, Klaholz S (1995) Numerical Modeling of Elastic Wave Propagation and Scattering with EFIT–Elastodynamic Finite Integration Technique. Wave Motion 21: 47–66MATHCrossRefGoogle Scholar
  12. 12.
    Schmitz V (2002) Nondestructive Acoustic Imaging Techniques. In: Fink M, Kuperman W A, Montagner J-P, Tourin A (eds) Imaging of Complex Media with Acoustic and Seismic Waves. Springer, BerlinGoogle Scholar
  13. 13.
    Mayer K, Marklein R, Langenberg K J, Kreutter T (1990) Three-Dimensional Imaging System Based on Fourier Transform Synthetic Aperture Focusing Technique. Ultrasonics 28: 241CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • K. J. Langenberg
    • 1
  • R. Marklein
    • 1
  • K. Mayer
    • 1
  • H. Wiggenhauser
    • 2
  • M. Krause
    • 2
  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of KasselKasselGermany
  2. 2.Federal Institute for Materials Research and Testing (BAM)BerlinGermany

Personalised recommendations