Advertisement

Physical-based Methods for Matrix Compression in Large Array Problems: A Unified View

  • G. Vecchi
  • M. Orefice
  • S. Maci
  • A. Neto
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 97)

Abstract

In antennas and microwave applications, practical applicability of electromagnetic solvers still remains challenging in a variety of situations of definite industrial or scientific interest; typical large or otherwise complex array antennas, their beam forming networks (BFN), and many instances of MMIC structures are one of the most important such cases. It is to be observed that the scale of the numerical problem may arise from the overall electrical size of the structure under analysis (i.e. in terms of wavelengths) or be determined by the complicacy of its geometrical features. The epitomic example of electrically large structures is the radar cross section computation of large bodies like aircraft; MMIC or other circuits are a typical example of smaller structures with very fine details; full analysis of large array antennas, inter-antenna coupling in large satellites, and the prediction of antenna system performance on complex platforms exhibit a mixture of the two classes of problems.

Keywords

Synthetic Function Reference Problem Infinite Array Beam Form Network Unknown Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.Chew, University of Illinois’ Electromagnetics Laboratory (1993), IEEE Antennas and Propagation Magazine, 35: 22–32, Aug. 1993.ADSCrossRefGoogle Scholar
  2. 2.
    Bleszynski E, Bleszynski M, Jaroszewicz T (1996), Radio Sci., 5: 1225–1251ADSCrossRefGoogle Scholar
  3. 3.
    Fasenfest B J, Capolino F, Wilton D R, Jackson D R, and Champagne N (2004), MoM Solutions for Large Planar Arrays of Three-Dimensional Elements: a Faster AIM Method. In: Proc. Triennial URSI Symposium on Electromagnetic Theory, Pisa, May 2004.Google Scholar
  4. 4.
    Shubitidze F, Anastassiu H T, Kaklamani D I (2004), IEEE Trans. on Antennas and Propagat., 52: 302–309.ADSCrossRefGoogle Scholar
  5. 5.
    Golik W L (2000), IEEE Trans. on Antennas and Propagat., 48: 473–481.MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Pirinoli P, Vecchi G, Matekovits L (2001), IEEE Trans. on Antennas and Propagat., 49:858–874.Google Scholar
  7. 7.
    Su C, Sarkar T K (2002), IEEE Trans. on Antennas and Propagat., 50: 444–450.ADSCrossRefGoogle Scholar
  8. 8.
    Vipiana F, Pirinoli P (2003), Multi-Resolution analysis of large arrays. In: 2003 IEEE AP-S Symposium Digest, 795–798.Google Scholar
  9. 9.
    Canning F X (1993), IEEE Trans. on Antennas and Propagat., 41: 659–667.ADSCrossRefGoogle Scholar
  10. 10.
    Ooms S, De Zutter D (1998), IEEE Trans. on Microwave Theory and Techniques, 46:280–291.Google Scholar
  11. 11.
    Matekovits L, Vecchi G, Dassano G L, Orefice M (2001), Synthetic Function Analysis of Large Printed Structures: the Solution Space Sampling Approach. In: 2001 IEEE AP-S Symposium Digest, 568–571.Google Scholar
  12. 12.
    Prakash V V S, Mittra R (2003), Microw. Opt. Technol. Letters, 36: 95–100.Google Scholar
  13. 13.
    Neto A, Maci S, Vecchi G, Sabbadini M (2000), IEEE Trans. on Antennas and Propagat., 48: 594–600.ADSCrossRefGoogle Scholar
  14. 14.
    Neto A, Maci S, Vecchi G, Sabbadini M (2000), IEEE Trans. on Antennas and Propagat., 48: 601–611.ADSCrossRefGoogle Scholar
  15. 15.
    Cucini A, Albani M, Maci S (2003), IEEE Trans on Antennas and Propagat., 51: 1386–1394.ADSCrossRefGoogle Scholar
  16. 16.
    Focardi P, Freni A, Maci S, and Vecchi G (2005), Efficient Analysis of Arrays of Rectangular Corrugated Horns: The Synthetic Aperture Function Approach, IEEE Trans. on Antennas and Propagat., to appear (Feb. 2005 )Google Scholar
  17. 17.
    Matekovits L, Vecchi G, Pirinoli P, Orefice M (2000) Hybrid, Multilevel MoM - Network Approach Model for the Analysis of Large Printed Structures. In: Millenium Conference on Antennas and Propagation, AP2000, Davos (CH).Google Scholar
  18. 18.
    Bucci O M, Franceschetti G (1989), IEEE Trans. Antennas Propagat., 37: 918–926.MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    Pirinoli P, Vipiana F, Matekovits L, Vecchi G (2003), Multiscale analysis of large complex arrays. In: Proceedings of ICEAA 2003, Torino, Italy, 605–608.Google Scholar
  20. 20.
    Neto A, De Maagt P J, Maci S (2003), IEEE Trans. on Antennas and Propagat., 51: 1638–1646.ADSCrossRefGoogle Scholar
  21. 21.
    Jackson D R, Mesa F, Di Nallo C, Nyquist D P (2000), Radio Sci., 35: 495–510.ADSCrossRefGoogle Scholar
  22. 22.
    Neto A, Maci S (2003), IEEE Trans. on Antennas and Propagat., 51: 1572–1581.ADSCrossRefGoogle Scholar
  23. 23.
    Neto A, Maci S (2004), IEEE Trans. on Antennas and Propagat., 52: 666–676.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • G. Vecchi
    • 1
  • M. Orefice
    • 1
  • S. Maci
    • 2
  • A. Neto
    • 3
  1. 1.Politecnico di TorinoItaly
  2. 2.University of SienaItaly
  3. 3.TNO-FELDen HaagThe Netherlands

Personalised recommendations