Skip to main content

The Impedance/Admittance Transformation Concept in Engineering Electrodynamics

  • Conference paper
Fields, Networks, Computational Methods, and Systems in Modern Electrodynamics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 97))

  • 298 Accesses

Abstract

Modern devices in telecommunication are complicated structures. The complete analysis can be done analytically only in exceptional cases. Therefore, numerical methods have to be used. These methods have different levels of numerical/analytic effort. One method with a low analytic part is the finite difference time domain method (see e.g. [11), with a discretization in all spatial directions and in time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Taflove, The Finite-Difference Time-Domain Method, Computational Electrodynamics. Artech house, inc, Norwood, MA, 1995.

    MATH  Google Scholar 

  2. R. Pregla and W. Pascher, “The Method of Lines”, in Numerical Techniques for Microwave and Millimeter Wave Passive Structures, T. Itoh, (Ed.), pp. 381–446. J. Wiley Publ., New York, USA, 1989.

    Google Scholar 

  3. R. Pregla, “MoL-BPM Method of Lines Based Beam Propagation Method”, in Methods for Modeling and Simulation of Guided-Wave Optoelectronic Devices (PIER 11), W. P. Huang, (Ed.), Progress in Electromagnetic Research, pp. 51–102. EMW Publishing, Cambridge, Massachusetts, USA, 1995.

    Google Scholar 

  4. R. Pregla and S. F. Helfert, “Modeling of Microwave devices with the method of lines”, in Recent Research developments in Microwave Theory & Techniques, B. Beker and Y. Chen, (Eds.), pp. 145–196. Research Signpost, Kerala, India, 2002.

    Google Scholar 

  5. S. F. Helfert and R. Pregla, “The method of lines: a versatile tool for the analysis of waveguide structures’; Electromagnetics,vol. 22, pp. 615–637, 2002, Invited paper for the special issue on ”Optical wave propagation in guiding structures“.

    Google Scholar 

  6. R. Pregla, “Efficient and Accurate Modeling of Planar Anisotropic Microwave Structures by the Method of Lines”, IEEE Trans. Microwave Theory Tech., vol. 50, pp. 1469–1479, June 2002.

    Article  ADS  Google Scholar 

  7. S. F. Helfert and R. Pregla, “Efficient analysis of periodic structures’; J. Lightwave Technol., vol. 16, no. 9, pp. 1694–1702, Sep. 1998.

    Article  ADS  Google Scholar 

  8. S. F. Helfert, “Efficient Analysis of Non Symmetric Periodic Optical Devices’; in OSA Integr. Photo. Resear. Tech. Dig., Victoria, Canada, Victoria, 1998, vol. 4, pp. 372–374.

    Google Scholar 

  9. R. Pregla, “Efficient Modeling of Periodic Structures’; AEU, vol. 57, pp. 185–189, 2003.

    Google Scholar 

  10. S. E Helfert, “Numerical stable determination of Floquet-modes and the application to the computation of band structures”, Opt. Quantum Electron.,vol. 36, pp. 87–107, 2004, Special Issue on Optical Waveguide Theory and Numerical Modelling.

    Google Scholar 

  11. L. Greda and R. Pregla, “Modeling of Planar Microwave Filters”, in European Microwave Week, Munich, Germany, 2003.

    Google Scholar 

  12. L. Greda and R. Pregla, “Hybrid Analysis of Three-Dimensional Structures by the Method of Lines Using Novel Nonequidistant Discretization”, in IEEE MTT-S Int. Symp. Dig., Seattle, USA, June 2002, pp. 1877–1880.

    Google Scholar 

  13. C.-C. Yu and K. Chang, “Novel compact elliptic-function narrow-band bandpass filters using microstrip open-loop resonators with coupled and crossing lines”, IEEE Trans. Microwave Theory Tech., vol. MTT-46, no. 7, pp. 952–958, 1998.

    ADS  Google Scholar 

  14. J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic crystals - Molding the flow of light, Princeton University Press, 1995.

    Google Scholar 

  15. Steven G. Johnson, Shanhui Fan, Pierre R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs”, Phys. Rev. B, vol. 60, no. 8, pp. 5751–5758, 1999.

    Article  ADS  Google Scholar 

  16. S. E Helfert, “The method of lines for the calculation of band structures in photonic crystals”, in ICTON Conf, Warsaw, Poland, 2003, vol. 5, pp. 122–125.

    Google Scholar 

  17. R. Stoffer, H. J. W. M. Hoekstra, R. M. de Ridder, E. van Groesen, and F. P. H. van Beckum, “Numerical studies of 2D photonic crystals: Waveguides, coupling between waveguides and filters”, Opt. Quantum Electron.,vol. 32, pp. 947–961, 2000, Special Issue on Optical Waveguide Theory and Numerical Modelling.

    Google Scholar 

  18. A. Barcz, S. Helfert, and R. Pregla, “Modeling of 2D photonic crystals by using the Method of Lines”, in ICTON Conf, Warsaw, Poland, 2002, vol. 4, pp. 45–48.

    Google Scholar 

  19. A. Barcz, S.F. Helfert, and R. Pregla, “The method of lines applied to numerical simulation of 2D and 3D bandgap structures”, in ICTON Conf., Warsaw, Poland, 2003, vol. 5, pp. 126–129.

    Google Scholar 

  20. A. Barcz, S.F. Helfert, and R. Pregla, “Numerical analysis of couplers and novel filters with the method of lines”, in ICTON Conf, Wraclow, Poland, 2004, vol. 6, pp. 122–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pregla, R., Helfert, S., Gręda, Ł., Barcz, A. (2004). The Impedance/Admittance Transformation Concept in Engineering Electrodynamics. In: Russer, P., Mongiardo, M. (eds) Fields, Networks, Computational Methods, and Systems in Modern Electrodynamics. Springer Proceedings in Physics, vol 97. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07221-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07221-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06296-4

  • Online ISBN: 978-3-662-07221-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics