Electrodynamic Modeling of Metamaterials with Negative Refractive Index

  • Wolfgang J. R. Hoefer
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 97)

Summary

The physics of electromagnetic wave propagation in metamaterials with negative refractive index has been studied extensively in recent years, but realistic and computationally efficient numerical models for such media are now just beginning to e merge.Such models must capture the characteristic dispersive behavior of the constitutive parameters of metamaterials and be fast and accurate enough to enable computer-aided design and virtual testing of realistic components containing such materials. This paper presents numerical models based on reactively loaded periodic networks that support backward waves and thus represent artificial media with negative refractive index. They are implemented as two- and three-dimensional transmission line matrix (TLM) networks. When embedded in a time domain electromagnetic field simulator, these models provide a versatile CAD tool and computational test bed for media with negative refractive index. Simulation results validate these TLM models and demonstrate their capabilities and potential.

Keywords

Permeability Microwave Beach Refraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ ”, Sov. Phys.-Usp, vol. 10, no. 4, pp. 509–514, Jan.-Feb. 1968.ADSCrossRefGoogle Scholar
  2. 2.
    J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech, vol. 47, no. 11, pp. 2075–2084, Nov. 1999.ADSCrossRefGoogle Scholar
  3. 3.
    D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett, vol. 84, no. 18, pp. 4184–4187, May 2000.ADSCrossRefGoogle Scholar
  4. 4.
    R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction;” Science, vol. 292, pp. 77–79, Apr. 2001.ADSCrossRefGoogle Scholar
  5. 5.
    A. K. Iyer and G. V. Eleftheriades, “Negative refractive index metamaterials supporting 2-D waves,” in IEEE MTT S Int. Microwave Symp Dig, vol. 2, Jun. 2–7, 2002, pp. 1067–1070.Google Scholar
  6. 6.
    G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar Negative Refractive Index Media Using Periodically L-C Loaded Transmission Lines”, IEEE Trans. Microwave Theory Tech, vol. 50, no. 12, pp. 2702–2712, Dec. 2002.ADSCrossRefGoogle Scholar
  7. 7.
    C. Caloz and T. Itoh, “Application of the transmission line theory of lefthanded (LH) materials to the realization of a microstrip LH transmission line;” in IEEE AP-S Int. Symp. Dig, vol. 2, Jun. 16–21, 2002, pp. 412–415.Google Scholar
  8. 8.
    A. A. Oliner, “A periodic-structure negative-refractive-index medium without resonant elements;” in USNC/URSI Nat. Radio Science Meeting, San Antonio, TX, June 16–21, 2002, P. 41.Google Scholar
  9. 9.
    S. Ramo, J. R. Whinnery, and T. Van Duzer, “Fields and Waves in Communication Electronics”, 3rd Ed., pp. 263–264, New York: Wiley,1994.Google Scholar
  10. 10.
    J. R. Whinnery and S. Ramo, “A New Approach to the Solution of High Frequency Field Problems”, Proc. I. R.E, Vol. 32, pp 284–288, May 1944.CrossRefGoogle Scholar
  11. 11.
    J. R. Whinnery, C. Concordia, W. Ridgway, and G. Kron, “Network Analyzer Studies of Electromagnetic Cavity Resonators” Proc. I. R.E, Vol. 32, pp 360–367, Jun 1944.CrossRefGoogle Scholar
  12. 12.
    P. B. Johns and R. L. Beurle, “Numerical Solution of 2-Dimensional Scattering problems using a Transmission Line Matrix” Proc. IEE, Vol. 118, No. 9, pp. 1203–1208, Sep. 1971.Google Scholar
  13. 13.
    P. B. Johns, “A Symmetrical Condensed Node for the TLM Method” IEEE Trans. Microwave Theory Tech., Vol. 35, pp 370–377.Google Scholar
  14. 14.
    C. Christopoulos “The Transmission–Line Modeling Method: TLM”, ISBN: 0–7803–1017–9, 232 pages, New York. Wiley–IEEE Press, 1995.CrossRefGoogle Scholar
  15. 15.
    P. P. M. So, Eswarappa and W. J. R. Hoefer, “A Two-dimensional Transmission Line Matrix Microwave Field Simulator Using New Concepts and Procedures” IEEE Trans. Microwave Theory Tech, vol. 37, no. 12, pp. 1877–1884, Dec. 1989.ADSCrossRefGoogle Scholar
  16. 16.
    P. P. M. So and W. J. R. Hoefer, “Time Domain TLM Modeling of Metamaterials with Negative Refractive Index”, in 2004 IEEE MTT-S Int. Microwave Symp. Dig, pp. 1779–1782, Jun. 2004.Google Scholar
  17. 17.
    J. B. Pendry, “Negative refraction makes a perfect lens” Phys. Rev. Lett, vol. 85, no. 18, pp. 3966–3969, Oct. 2000.ADSCrossRefGoogle Scholar
  18. 18.
    A. Grbic and G. V. Eleftheriades, “Subwavelength Focusing Using a Negative-RefractiveIndex Transmission Line Lens”, IEEE Antennas Wireless Propagat. Lett., vol. 2, pp. 186–189, 2003.ADSGoogle Scholar
  19. 19.
    H. Du, P. P. M. So and W. J. R. Hoefer, “Inter-Cell Scattering Framework in TLM for Modeling Material Properties” in EuMC 2004 Dig, Amsterdam, Netherlands, Oct. 12–14, 2004.Google Scholar
  20. 20.
    P. P. M. So and W. J. R. Hoefer, “Time Domain TLM Modeling of Metamaterials with Negative Refractive Index”, in EuMC 2004 Dig, Amsterdam, Netherlands, Oct. 12–14, 2004.Google Scholar
  21. 21.
    P. P. M. So, H. Du and W. J. R. Hoefer, “Modeling of Metamaterials with Negative Refractive Index using 2D-Shunt and 3D-SCN TLM Networks” IEEE Trans. Microwave Theory Tech,vol. 53, no. 5, Apr. 2005 (in press).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Wolfgang J. R. Hoefer
    • 1
  1. 1.Faustus Scientific CorporationVictoriaCanada

Personalised recommendations