Practice of Micro Pulling Down Growth

  • Boris M. Epelbaum
Part of the Advances in Materials Research book series (ADVSMATERIALS, volume 6)


In this chapter we will focus on practical aspects of the micro pulling down growth method. Basic prerequisites for successful use of monocrystalline optical fibers are that they have to be grown with specific and homogeneous composition and smooth cylindrical geometry. In the first part of the chapter the problems of longitudinal homogeneity and surface quality of μ-PD fibers are addressed in detail. Direct implementation of these considerations is that significant improvement of fiber quality can be achieved only under precise control of the meniscus height. In the second part of the chapter the reverse situation is discussed: the intentional use of growth parameter variations during μ-PD for different growth studies. Here μ-PD appears as supporting instrumentality for bulk melt growth technologies. Because of the excellent stability and simplicity, the method has been proven to be a very useful research tool.


Lithium Niobate Fiber Crystal Marangoni Convection Growth Interface Fiber Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.S. Feigelson, Materials Science and Engineering B1 67 (1988).CrossRefGoogle Scholar
  2. 2.
    P. Rudolph, T. Fukuda, Cryst. Res. Technol., 34 3 (1999).CrossRefGoogle Scholar
  3. 3.
    B.M. Epelbaum, K. Inaba, S. Uda, K. Shimamura, M. Imaeda, V.V. Kochurikhin, T. Fukuda, J. of Crystal Growth 176 559 (1997).CrossRefGoogle Scholar
  4. 4.
    H.J. Koh, N. Schaefer, K. Shimamura, T. Fukuda, J. Cryst. Growth, 167 38 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    S. Uda, J. Kon, K. Shimamura, T. Fukuda, J. Cryst. Growth 167 64 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    S. Uda, J. Kon, J. Ichikawa, K. Inaba, K. Shimamura, T. Fukuda, J. Cryst. Growth, 179 567 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    V.I. Chani, A. Yoshikawa, Y. Kuwano, K. Hasegawa, T. Fukuda, J. Cryst. Growth 204 155 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    B.M. Epelbaum, K. Inaba, S. Uda, T. Fukuda, J. Cryst. Growth 178 426 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    R.S. Feigelson, J. Cryst. Growth 79 669 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Okano, M. Ito, A. Hirata, J. Chem. Eng. Japan, 22 275 (1989).Google Scholar
  11. 11.
    Y. Okano, M. Ito, A. Hirata, J. Chem. Eng. Japan, 22 385 (1989).Google Scholar
  12. 12.
    J. Trauth, B.C. Grabmeier, J. Cryst. Growth 112 451 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    X. Chen, Q. Wang, X. Wu, K. Lu, J. Cryst. Growth 204 163 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    J. Brice, Cryst. Growth 6 205 (1970).ADSCrossRefGoogle Scholar
  15. 15.
    N.Ohnishi, T.Yao, Jpn. J. Appl. Phys. 28 L278 (1989).ADSGoogle Scholar
  16. 16.
    J. Reiche, B. Bohm, J. Hermoneit, et. al. Cryst. Growth 108 759 (1991).CrossRefGoogle Scholar
  17. 17.
    Voronkov, Izvestiya Akad. Nauk SSSR, Ser. Fiz. 52 (10) 1874 (1988).Google Scholar
  18. 18.
    A. Yoshikawa, B.M. Epelbaum, K. Hasegawa, S.D. Durbin, T. Fukuda, J. Cryst. Growth 205 305 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    A.V. Tatarchenko, Shaped crystal growth, Kluwer, Dordrecht, 1993.Google Scholar
  20. 20.
    J. Surek, Appl. Phys., 47 (1976) 4384.Google Scholar
  21. 21.
    L.G. Rubinstein, W.H. Van Uitert, J. Grodkiewicz, Appl. Phys. 35, 3069 (1964).Google Scholar
  22. 22.
    Kuzanyan, K.L. Ovanesyan, A.G. Petrosyan, G.O. Shirinyan, Dokl. Akad. Nauk Armyansk. SSR 74, 42 (1982).Google Scholar
  23. 23.
    Ganschow, D. Klimm, P. Reiche, R. Uecker, Cryst. Res. Technol., 34 615–619 (1999).CrossRefGoogle Scholar
  24. 24.
    B.M.Epelbaum, A.Yoshikawa, K.Shimamura, T. Fukuda, K. Suzuki, Y. Waku, J. Cryst. Growth, 19199 471 (1999).Google Scholar
  25. 25.
    S. Ganschow, B.M. Epelbaum, D. Klimm, A. Yoshikawa, T. Fukuda, Proc. SPIE 3724 52–55 (1999).ADSCrossRefGoogle Scholar
  26. 26.
    Maksakov, A.M. Morozov et. al., Opt. Spectrosc. 14, 166 (1963).ADSGoogle Scholar
  27. 27.
    van Loo and D.J. Wolterink, Phys. Lett. A47, 83 (1974).CrossRefGoogle Scholar
  28. 28.
    Azarbayejani, J. Appl. Phys. 43, 3880 (1972).Google Scholar
  29. 29.
    Kroger, Nature (London) 159, 674 (1947).ADSCrossRefGoogle Scholar
  30. 30.
    van Loo, J. Solid State Chem. 14, 359 (1975).ADSCrossRefGoogle Scholar
  31. 31.
    Groenink and H. Binsma, J. Solid State Chem. 29, 227 (1979).ADSCrossRefGoogle Scholar
  32. 32.
    Groenink and G. Blasse, J. Solid State Chem. 32, 9 (1980).ADSCrossRefGoogle Scholar
  33. A. Fyodorov, Korzhik et. al., Nuclear Sci. Symposium and Medical Imaging Conference. 1994 IEEE Conference Record (Cat. No.94CH35762), 1 (1995), 114.Google Scholar
  34. 34.
    Lecoq, I. Dafinei, E. Auffray et. al., Nucl. Instrum. Methods A 365 291 (1995).ADSCrossRefGoogle Scholar
  35. 35.
    Kobayashi, M. Ishii, Y. Usuki and H. Yahagi, Nucl. Instrum. Methods A 333 429 (1993).ADSCrossRefGoogle Scholar
  36. 36.
    Nikl, K. Polak, K. Nitsch et. al., Proc. SCINT95, Aug 28-Sept 1, 1995, Delft, The Netherlands.Google Scholar
  37. 37.
    Nitsch, M. Nikl, S. Ganschow, J. Cryst. Growth 165, 163 (1996).ADSCrossRefGoogle Scholar
  38. 38.
    Bonner and G.j. Zudzik, J. Cryst. Growth 7, 65 (1970).ADSCrossRefGoogle Scholar
  39. 39.
    Nalivaiko, I.A. Rat’kovskii, Izv. Akad. Nauk SSSR Neorg. Mater., 17 (1981), No. 6, 1132.Google Scholar
  40. 40.
    Swartz, T. Surek and B. Chalmers, J Electron Mater. 4 255 (1975).ADSCrossRefGoogle Scholar
  41. 41.
    Roth and J.L. Waring, J. Research National Bureau of Standards — Physics and Chemistry, 70A (1966), No. 4, 281.Google Scholar
  42. 42.
    S.C. Sabharwal, Sangeeta, D.G. Desai, S.C. Karandikar, A.K. Chauhan, A.K. Sangiri, K.S. Keshwani, M.N. Ahuja, J. Cryst. Growth 169 304 (1996).CrossRefGoogle Scholar
  43. 43.
    N. Senguttuvan, P. Mohan, S.M. Babu, C. Subramanian, J. Cryst. Growth 183 391 (1998).ADSCrossRefGoogle Scholar
  44. 44.
    N. Senguttuvan, P. Mohan, S.M. Babu, P. Ramasamy, J. Cryst. Growth 191 130 (1998).ADSCrossRefGoogle Scholar
  45. 45.
    S. Burachas, V. Martinov, V. Ryzhikov, G. Tamulaitis, H.H. Gutbrod, V.I Manko, J. Cryst. Growth 186 175 (1998).ADSCrossRefGoogle Scholar
  46. 46.
    A.Yu. Bunkin, J. Cryst. Growth 123 459 (1992).ADSCrossRefGoogle Scholar
  47. 47.
    Takano, S., Esashi, S., Mori, K., Namikata, T., J. Cryst. Growth 24 /25 437 (1974).ADSCrossRefGoogle Scholar
  48. 48.
    V.N. Kurlov, S.N. Rossolenko, J. Cryst. Growth 173 417 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Boris M. Epelbaum

There are no affiliations available

Personalised recommendations