Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Görtier, H.: Über eine dreidimensionale Instabilität laminarer Grenzschichten an konkaven Wänden. Nachr. Wiss. Ges. Göttingen, Math.-Phys. KL, Neue Folge I, 2, 1–26(1940).Google Scholar
  2. 2.
    Smith, A. M. O.: On the growth of Taylor-Görtler vortices along highly concave walls. Quart. Appl. Math. 13, 233 (1955).MathSciNetMATHGoogle Scholar
  3. 3.
    Taylor, G. I. : Stability of a viscous liquid contained between two rotating cylinders. Philos. Trans. Roy. Soc. London, Ser. A 223, 289–293 (1923).ADSMATHCrossRefGoogle Scholar
  4. 4.
    Hämmerlin, G. : Über das Eigenwertproblem der dreidimensionalen Instabilität laminarer Grenzschichten an konkaven Wänden. J. Rat. Mech. Anal. 4, 271–321 (1955).Google Scholar
  5. 5.
    Hämmerlin, G. : Zur Theorie der dreidimensionalen Instabilität laminarer Grenzschichten. Z. Angew. Math. Phys. 7, 156–164 (1956).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Clauser, M., Clauser, F.: The effect of curvature on the transition from laminar to turbulent boundary layer. National Advisory Committee for Aeronautics Techn. Note No. 613, 1937.Google Scholar
  7. 7.
    Liepmann, H. W.: Investigations on laminar boundary layer stability and transition on curved boundaries. NACA Wartime Report W 107, 1943.Google Scholar
  8. 8.
    Liepmann, H. W.: Investigation of boundary layer transition on concave walls. NACA Wartime Report W87, 1945.Google Scholar
  9. 9.
    Gregory, N., Walker, W.S.: The effect of transition of isolated surface excrescences in the boundary layer. ARC Rep., R. & M. No. 2779, 1–10 (1956.)Google Scholar
  10. 10.
    Aihara, Y. : Transition in an incompressible boundary layer along a concave wall. Bull. Aeron. Res. Inst., Tokyo Univ. 3, 195 (1962).Google Scholar
  11. 11.
    Tani, I., Sakagami, J.: Boundary layer instability of subsonic speeds. Proc. Int. Counc. Aeron. Sci. Stockholm 1962, S. 391 (Spartau 1964).Google Scholar
  12. 12.
    Tani, I. : Production of longitudinal vortices in the boundary layer along a concave wall. J. Geophys. Res. 67, 3075–3080 (1962).ADSCrossRefGoogle Scholar
  13. 13.
    Wortmann, F. X.: Experimental investigations of vortex occurence at transition in unstable laminar boundary layers, p. 815. Munich: Proceed. XL Int. Congr. Appl. Mech. 1964.Google Scholar
  14. 14.
    Wortmann, F. X. : Visualization of transition. J. Fluid Mechanics 38, p. 3, 473 – 480 (1969).ADSCrossRefGoogle Scholar
  15. 15.
    Tani, I., Aihara, Y.: Görtier vortices and boundary layer transition. Z. Angew. Math. Phys. 20/39, 609 (1969).CrossRefGoogle Scholar
  16. 16.
    Clutter, D. W., Smith, A. M. O., Brazier, J. G.: Techniques of flow visualization using water as the working medium. Douglas Aircraft Comp., Inc., Report Nr. ES 29075 (1959).Google Scholar
  17. 17.
    Hama, F. R.: Boundary layer transition induced by a vibrating ribbon on a flat plate. University of Maryland, Techn. Note BN 195, AFOSR-TN 60–290 (1960).Google Scholar
  18. 18.
    Geller, E. W.: An electrochemical method of visualizing the boundary layer. Master Thesis, Dept. of Aeron. Engr. Mississippi State College 1954.Google Scholar
  19. 19.
    Lukasik, S. J., Grosch, C. E.: Velocity measurements in thin boundary layers. Davidson Laboratory, Stevens Institute of Technology Hoboken, New Jersey, Technical Memorandum 1959.Google Scholar
  20. 20.
    Schraub, F. A., Kline, S. J., Henry, J., Runstadler (Jr.), P. W., Litell, A.: Use of hydrogen bubbles for qualitative determination of time dependent velocity fields in low speed water flows. Report MD-10, Thermoscience Div. Mech. Engr. Dept., Stanfort University 1964.Google Scholar
  21. 21.
    Rinner, K.: Abbildungsgesetz und Orientierungsaufgaben in der Zweimedien-photogrammetrie. Sonderheft 5 der Österr. Zeitung für Vermessungswesen (1948)Google Scholar
  22. 22.
    Mori, Ch., Okamoto, A.: Näherungsverfahren für die Ermittlung der Lage des Unterwasserpunktes in der Zweimedienphotogrammetrie. Mem. Fac. Engr., Kyoto Univ. 33, pt. 1, 47 – 65 (1970).Google Scholar
  23. 23.
    Tewinkel, G. C.: Water depths from aerial photographs. Photo. Engr. 1037 (1963).Google Scholar
  24. 24.
    Graefe, V. : Aufbau eines turbulenzarmen Wasserkanals zur Untersuchung instabiler Grenzschichten und Messung des Turbulenzgrades der Kanalströmung. Max-Planck-Institut für Strömungsforschung, Göttingen, Bericht 5 (1968).Google Scholar
  25. 25.
    Schubauer, G. B., Skramstad, H. K.: Laminar boundary layer oscillations and stability of laminar flow. National Bureau of Standards, Research Paper 1772 (1943).Google Scholar
  26. 26.
    Schubauer, G. B., Spangenberg, W. G., Klebanoff, P. S.: Aerodynamic characteristics of damping screens. NACA TN 2001 (1950).Google Scholar
  27. 27.
    Bradshaw, P.: The effect of wind tunnel screens on nominally two-dimensional boundary layers. J. Fluid Mech. 22, pt. 4, 679–687 (1965).ADSCrossRefGoogle Scholar
  28. 28.
    Mochizuki, M.: Smoke observation on boundary layer transition caused by spherical roughness element. J. Phys. Soc. Japan 16, No. 5 (1961).Google Scholar
  29. 29.
    Menzel, K.: Über eine nichtlineare dreidimensionale Instabilität laminarer Grenzschichtströmungen. DLR FB 69–48 (1969).MATHGoogle Scholar
  30. 30.
    Stuart, J. T.: The production of intense shear layers by vortex stretching and convection. Advisory Group for Aeronautical Research and Development, Report 514 (1965).Google Scholar
  31. 31.
    Meksyn, D., Stuart, J. T.: Stability of viscous motion between parallel planes for finite disturbances. Proc. Roy. Soc. Ser. A 208, 517 – 526 (1951).MathSciNetADSMATHCrossRefGoogle Scholar
  32. 32.
    Grohne, D.: Die Stabilität der ebenen Kanalströmung gegenüber dreidimensionalen Störungen von endlicher Amplitude. AVA-Bericht 69 A30 (1969).Google Scholar
  33. 33.
    Murphy, J. S.: Extensions of the Falkner-Scan similar solutions to flows with surface curvature. AIAA Journal 3, 11 (1965).Google Scholar
  34. 34.
    Narasimha, R., Ojha, S. K.: Effect of longitudinal surface curvature on boundary layers. J. Fluid Mech. 29, 1, 187–199 (1967).ADSMATHCrossRefGoogle Scholar
  35. 35.
    Nutant, J. A.: The transition process in a boundary layer on a flat plate, p. 1 – 80. Maryland University, College Park (1963). PH. D. Thesis, Contr. AF 49.Google Scholar
  36. 36.
    Hama, F. H., Nutant, J. : Detailed flow-field observations in the transition process in a thick boundary layer. Proc. 1963 Heat Transfer and Fluid Mech. Inst., Vol. 77, Stanford University Press (1963).Google Scholar
  37. 37.
    Meyer, K. A., Kline, S. J. : A visual study of the flow model in the later stages of laminar-turbulent transition on a flat plate. Report MD-7, Thermosciences Div., Mech. Engineering Department, Stanford University (1961).Google Scholar
  38. 38.
    Kovásznay, L. S. G., Komoda, H., Vasudeva, B. R.: Detailed flow field in transition. Proc. 1962 Heat Transfer and Fluid Mech. Inst., Stanford University Press (1962).Google Scholar
  39. 39.
    Klebanoff, P. S., Tidstrom, K. D., Sargent, L. M.: The three-dimensional nature of boundary layer instability. J. Fluid Mech. 12 (1), 1–33 (1962).ADSMATHCrossRefGoogle Scholar
  40. 40.
    Komoda, H.: Nonlinear development of disturbance in a laminar boundary layer. Phys. Fluids 10, Suppl. 87 (1967).ADSCrossRefGoogle Scholar
  41. 41.
    Idrac, P.: Etudes expérimentales sur le vol à voile. Thèse, Paris (1921).Google Scholar
  42. 42.
    Görtier, H.: Über eine Analogie zwischen den Instabilitäten laminarer Grenzschichtströmungen an konkaven Wänden und an erwärmten Wänden. Ing.-Arch. 28, 71–78 (1959).CrossRefGoogle Scholar
  43. 43.
    Kirchgässner, K.: Einige Beispiele zur Stabilitätstheorie von Strömungen an konkaven und erwärmten Wänden. Ing.-Arch. 31, 2. Heft, 115–124 (1962).MATHCrossRefGoogle Scholar
  44. 44.
    Finsterwalder, R., Hofmann, W.: Photogrammetrie. Berlin: Walter de Gruyter & Co. 1968.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1972

Authors and Affiliations

  • Hans Bippes
    • 1
  1. 1.Institut für Angewandte Mathematik und MechanikDeutschen Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V.FreiburgDeutschland

Personalised recommendations