Skip to main content

Physiologie und Pathophysiologie der Impulsleitung

  • Chapter
Evozierte Potentiale

Zusammenfassung

Adäquate Reizung von Sinnesorganen führt zur Entstehung von Generatorpotentialen in den spezifischen Sinnesrezeptoren. Die Höhe des Generatorpotentials bestimmt die Zahl und die Frequenz der Nervenaktionspotentiale in den angeschlossenen Nervenfasern. Die Aktionspotentiale erreichen über mehrere hintereinandergeschaltete Neurone die spezifischen sensorischen Rindenfelder, wobei bereits vor deren Eintreffen im Cortex Prozesse der Filterung und Integration in den einzelnen synaptischen Schaltstationen ablaufen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  • Anderson MH, Fullerton PM, Gilliatt RW, Hern JEC (1970) Changes on the forearm associated with median nerve compression at the wrist in the guinea-pig. J Neurol Neurosurg Psychiatry 33:70 – 79

    Article  PubMed  CAS  Google Scholar 

  • Arezzo J, Legatt AD, Vaughan HG (1979) Topography and intracranial sources of somatosensory evoked potentials in the monkey. 1. Early components. Electroencephalogr Clin Neurophysiol 46: 155 – 172

    Article  PubMed  CAS  Google Scholar 

  • Barchi RL (1980) Excitation and conduction in nerve. In: Sumner A (ed) The physiology of peripheral nerve disease. Philadelphia, Saunders

    Google Scholar 

  • Bernstein JJ, Bernstein ME, Wells MR (1978) Spinal cord regeneration and axonal sprouting in mammals. In: Waxman SG (ed) Physiology and pathobiology of axons. Raven, New York, pp 407 – 420

    Google Scholar 

  • Blakemore WF, Murray JA (1981) Quantitative examination of internodal length of remyelinated nerve fibres in the central nervous system. J Neurol Sci 49: 273 – 284

    Article  PubMed  CAS  Google Scholar 

  • Bostock H, Sears TA (1976) Continuous conduction in demyelinated mammalian nerve fibers. Nature 263: 786 – 787

    Article  PubMed  CAS  Google Scholar 

  • Bostock H, Sears TA (1978) The internodal axon membrane: electrical excitability and continuous conduction in segmental demyelination. J Physiol (Lond) 280: 273 – 301

    CAS  Google Scholar 

  • Bradley WG (1974) Disorders of peripheral nerves. Blackwell, Oxford London Edinburgh Melbourne

    Google Scholar 

  • Brill MH, Waxman SG, Moore JW, Joyner RW (1977) Conduction velocity and spike configuration in myelinated fibres: computed dependence on internode distance. J Neurol Neurosurg Psychiatry 40: 769 – 774

    Article  PubMed  CAS  Google Scholar 

  • Causey G, Stratmann CJ (1953) The spread of failure of conduction in degenerated mammalian nerve. J Physiol (Lond) 121: 215 – 223

    CAS  Google Scholar 

  • Clifford-Jones RE, Landon DN, McDonald WI (1980) Remyelination during optic nerve compression. J Neurol Sci 46: 239 – 243

    Article  PubMed  CAS  Google Scholar 

  • Clifford-Jones RE, McDonald WI, Landon DN (1985) Chronic optic nerve compression. Brain 108: 241 – 262

    Article  PubMed  Google Scholar 

  • Cragg BG, Thomas PK (1961) Changes in conduction velocity and fiber size proximal to peripheral nerve lesions. J Physiol (Lond) 157: 315 – 327

    CAS  Google Scholar 

  • Cragg BG, Thomas PK (1964 a) Changes in nerve conduction in experimental allergic neuritis. J Neurol Neurosurg Psychiatry 27: 106 – 115

    Article  PubMed  CAS  Google Scholar 

  • Cragg BG, Thomas PK (1964b) The conduction velocity of regenerated peripheral nerve fibers. J Physiol (Lond) 171: 164 – 175

    CAS  Google Scholar 

  • Davies HD, Carroll WM, Mastaglia FL (1986) Effects of hyperventilation on pattern-reversal visual evoked potentials in patients with demyelination. J Neurol Neurosurg Psychiatry 49: 1392 – 1396

    Article  PubMed  CAS  Google Scholar 

  • Davis FA, Bergen D, Schauf C, McDonald I, Deutsch W (1976) Movement phosphenes in optic neuritis — A new clinical sign. Neurol (Minneap) 26:1100 – 1104

    Article  CAS  Google Scholar 

  • Davis FA, Jacobson S (1971) Altered thermal sensitivity in injured and demyelinated nerve: A possible model of temperature effects in multiple sclerosis. J Neurol Neurosurg Psychiatry 34: 551 – 561

    Article  PubMed  CAS  Google Scholar 

  • DeBaecqué C, Raine CS, Spencer PS (1976) Copper binding at PNS nodes of Ranvier during demyelination and remyelination in the peripheral window. Neuropathol Appl Neurobiol 6:459 – 470

    Article  Google Scholar 

  • Dudel J (1980) Funktion der Nervenzellen. In: Schmidt RF, Thews G (Hrsg) Physiologie des Menschen. Springer, Berlin Heidelberg New York, S 2 – 33

    Google Scholar 

  • Dumitru D, Jewett DL (1993) Muscle Nerve 16:237 – 254

    Article  PubMed  CAS  Google Scholar 

  • Ebeling P, Gilliatt RW, Thomas PK (1960) A clinical and electrical study of ulnar nerve lesions in the hand. J Neurol Neurosurg Psychiatry 23:1

    Article  PubMed  CAS  Google Scholar 

  • Fleming JW, Lenmann JAR, Stewart WK (1972) Effect of magnesium on nerve conduction velocity during regular dialysis. J Neurol Neurosurg Psychiatry 35: 342

    Article  PubMed  CAS  Google Scholar 

  • Frankenhaeuser B (1973) The nerve impulse: some comments: In: Desmedt JE (ed) New development in electromyography and clinical neurophysiology, vol 2. Karger, Basel, pp 42 – 44

    Google Scholar 

  • Fullerton PM (1969) Electrophysiological and histological observations in peripheral nerves in man. J Neurol Neurosurg Psychiatry 23: 186 – 192

    Article  Google Scholar 

  • Fullerton PM, Barnes JM (1966) Peripheral neuropathy in rats produced by acrylamide. Br J Ind Med 23:210 – 221

    PubMed  CAS  Google Scholar 

  • Gledhill RF, McDonald WI (1977) Morphological characteristics of central demyelination and remyelination: A single fibre study. Ann Neurol 1: 552 – 560

    Article  PubMed  CAS  Google Scholar 

  • Gutmann E, Holubar J (1952) Degenerace terminalnich organu v pricne pruhovanem a hladkem svalstvu. Čs Fysiol 1: 168 – 175

    Google Scholar 

  • Hardy WL (1971) Computed dependence of conduction speed in myelinated axons on geometric parameters (Abstract). Biophys Soc 11: 238 a

    Google Scholar 

  • Höfinger E, Le Quesne P, Gajree T (1982) Conduction velocity in nerve fibres with axonal atrophy due to chronic β, β´-iminodiproprionitrile (IDPN). J Neurol Sci 53: 159 – 167

    Article  PubMed  Google Scholar 

  • Huxley AF, Stämpfli R (1949) Evidence for saltatory conduction in peripheral myelinated nerve fibres. T Physiol (Lond) 108: 315 – 339

    Google Scholar 

  • Janz D, Neundörfer B (1968) Klinische und elektromyographische Untersuchungen nach Triacrylphosphat-Polyneuropathie. Dtsch Z Nervenheilkd 194: 51 – 65

    Article  PubMed  CAS  Google Scholar 

  • Kaeser HE, Lambert EH (1962) Nerve function studies in experimental polyneuritis. Electroencephalogr Clin Neurophysiol [Suppl] 22:29 – 35

    Google Scholar 

  • Kaji R, Tanaka R, Kawaguchi S, McCormick F, Kameyama M (1986) Origin of short-latency somatosensory evoked potentials to median nerve stimulation in the cat. Brain 109: 443 – 468

    Article  PubMed  Google Scholar 

  • Kaji R, Sumner AJ (1990) Vector short-latency somatosensory evoked potentials after median nerve stimulation. Muscle Nerve 13:1174 – 1182

    Article  PubMed  CAS  Google Scholar 

  • Kimura J, Kimura A, Ishida T, Kudo Y, Suzuki S, Machida M, Matsuoka H, Yamada H (1986) What determines the latency and amplitude of stationary peaks in far-field recordings? Ann Neurol 19: 479 – 486

    Article  PubMed  CAS  Google Scholar 

  • Koles ZJ, Rasminsky M (1972) A computer simulation of conduction in demyelinated nerve fibres. J Physiol (Lond) 227: 351 – 364

    CAS  Google Scholar 

  • Kraft GH (1975) Serial nerve conduction and electromyographic studies in experimental allergic neuritis. Arch Phys Med Rehabil 56: 333 – 340

    PubMed  CAS  Google Scholar 

  • Landon DN, Hall S (1976) The myelinated nerve fibre. In: Landon DN (ed) The peripheral nerve. Chapman & Hall, London, pp 1 – 105

    Google Scholar 

  • Lehmann HJ, Ule G (1964) Electrophysiological findings and structural changes in circumscript inflammation of peripheral nerves. Prog Brain Res 6: 169 – 173

    Article  Google Scholar 

  • Lorente de No R (1947) Action potentials of the motoneurons of the hypoglossus nucleus. J Cell Comp Physiol 29: 207 – 289

    Article  Google Scholar 

  • Mawdsley C, Mayer RF (1965) Nerve conduction in alcoholic polyneuropathy. Brain 88: 335

    Article  PubMed  CAS  Google Scholar 

  • McDonald WI (1963) The effects of experimental demyelinisation on conduction in peripheral nerve: a histological and electrophysiological study. 1. Clinical and histological observations. Brain 86: 481 – 500

    Article  PubMed  CAS  Google Scholar 

  • McDonald WI (1974 a) Pathophysiology in multiple sclerosis. Brain 97: 179 – 196

    Article  PubMed  CAS  Google Scholar 

  • McDonald WI (1974 b) Remyelination in relation to clinical lesions of the central nervous system. Br Med Bull 30: 186 – 189

    PubMed  CAS  Google Scholar 

  • McDonald WI, Kocen RS (1975) Diphtheritic neuropathy. In: Dyck PJ, Thomas PK, Lambert EH (eds) Peripheral neuropathy. Saunders, Philadelphia, pp 1281 – 1300

    Google Scholar 

  • McDonald WI, Robertson MAH (1972) Changes in conduction during nerve fibre degeneration in the spinal cord. Brain 95:151 – 162

    Article  PubMed  CAS  Google Scholar 

  • McDonald WI, Sears TA (1970) The effects in experimental demyelination on conduction in the central nervous system. Brain 93: 583 – 598

    Article  PubMed  CAS  Google Scholar 

  • Morgan-Hughes JA (1968) Experimental diphtheritic neuropathy, a pathological and electrophysiological study. J Neurol Sci 7: 157 – 175

    Article  PubMed  CAS  Google Scholar 

  • Namerow NS (1978) Evoked potentials in demyelinating disease. In: Waxman SG (ed) Physiology and pathobiology of axons. Raven, New York, pp 421 – 429

    Google Scholar 

  • Niemann G, Stöhr M, Müller GA (1984) Einfluß der Hämodialyse auf die somatosensibel evozierten Potentiale bei Urämiepatienten. Eur Arch Psychiatr Neurol Sci 234: 184 – 188

    Article  CAS  Google Scholar 

  • Nieuwenhuys R, Voogd J, Huijzen Chr van (1978) The human central nervous system. A synopsis and atlas. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Noël P, Desmedt JE (1980) Cerebral and far-field somatosensory evoked potentials in neurological disorders involving the cervical spinal cord, brainstem, thalamus and cortex. In: Desmedt JE (ed) Clinical uses of cerebral, brainstem and spinal somatosensory evoked potentials. Karger, Basel, pp 205 – 230

    Google Scholar 

  • Paintal AS (1978) Conduction properties of normal peripheral mammalian axons. In: Waxman SG (ed) Physiology and pathobiology of axons. Raven, New York, pp 131 – 144

    Google Scholar 

  • Prineas J, Connell F (1979) Remyelination in multiple sclerosis. Ann Neurol 5: 22 – 31

    Article  PubMed  CAS  Google Scholar 

  • Rasminsky M (1973) The effects of temperature on conduction in demyelinated single nerve fibers. Arch Neurol 28: 287 – 292

    Article  PubMed  CAS  Google Scholar 

  • Rasminsky M (1978) Ectopic generation of impulses and crosstalk in spinal nerve roots of “dystrophic” mice. Ann Neurol 3: 351 – 357

    Article  PubMed  CAS  Google Scholar 

  • Rasminsky M (1978) Physiology of conduction in demyelinated axons. In: Waxman SG (ed) Physiology and pathobiology of axons. Raven, New York, pp 361 – 376

    Google Scholar 

  • Rasminsky M, Sears TA (1972) Internodal conduction in undissected demyelinated nerve fibres. J Physiol (Lond) 277: 323 – 350

    Google Scholar 

  • Raymond SA, Lettvin JY (1978) Aftereffects of activity in peripheral axons as a clue to nervous coding. In: Waxman SG (ed) Physiology and pathobiology of axons. Raven, New York, pp 203 – 225

    Google Scholar 

  • Regan D (1977) Steady-state evoked potentials. J Opt Soc Am 67:1475 – 1489

    Article  PubMed  CAS  Google Scholar 

  • Schauf CL, Davis FA (1974) Impulse conduction in multiple sclerosis: A theoretical basis for modification by temperature and pharmacological agents. J Neurol Neurosurg Psychiatry 37: 152 – 161

    Article  PubMed  CAS  Google Scholar 

  • Sclabassi RJ, Namerow NS, Enns NF (1974) Somatosensory response to stimulus trains in patients with multiple sclerosis. Electroencephalogr Clin Neurophysiol 37:23 – 33

    Article  PubMed  CAS  Google Scholar 

  • Sears TA (1979) Nerve conduction in demyelination, amyelination and early regeneration. In: Aguayo AJ, Karpati G (eds) Current topics in nerve and muscle research: selected papers of the Symposia held at the 4th Intern. Congress on Neuromuscular Diseases, Montreal, Canada, Sept. 17 – 21, 1978. Excerpta Medica, Amsterdam Oxford, pp 181 – 188

    Google Scholar 

  • Smith KJ, Blakemore WF, McDonald WI (1979) Central remyelination restores secure conduction. Nature 280: 395 – 396

    Article  PubMed  CAS  Google Scholar 

  • Smith K, Blakemore WF, McDonald WI (1981) The restoration of conduction by central remyelination. Brain 104:383 – 404

    Article  PubMed  CAS  Google Scholar 

  • Smith RS, Koles ZJ (1970) Myelinated nerve fibres: computed effect of myelin thickness on conduction velocity. Am J Physiol 219: 1256 – 1258

    PubMed  CAS  Google Scholar 

  • Smith KJ, McDonald WI (1982) Spontaneous and evoked electrical discharges from a central demyelinating lesion. J Neurol Sci 55: 39 – 47

    Article  PubMed  CAS  Google Scholar 

  • Spencer PS, Weinberg HJ (1978) Axonal specification of Schwann cell expression and myelination. In: Waxman SG (ed) Physiology and pathobiology of axons. Raven, New York, pp 389 – 405

    Google Scholar 

  • Stämpfli R, Hille B (1976) Electrophysiology of the peripheral myelinated nerve. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 3 – 32

    Chapter  Google Scholar 

  • Stöhr M (1981 a) Activity-dependent variations in threshold and conduction velocity of human sensory fibers. J Neurol Sci 49:47 – 54

    Google Scholar 

  • Stöhr M (1981b) Modification of the recovery-cycle of human median nerve by ischemia. J Neurol Sci 51: 171 – 180

    Article  PubMed  Google Scholar 

  • Stöhr M, Bluthardt M (1993) Atlas der klinischen Elektromyographie und Neurographie, 3. Aufl. Kohlhammer, Stuttgart

    Google Scholar 

  • Stöhr M (1992) Kortison-Stoßtherapie bei Multipler Sklerose. Springer, Berlin Heidelberg New York Tokyo

    Book  Google Scholar 

  • Stöhr M, Schumm F, Reill P (1977) Retrograde changes in motor and sensory conduction velocity after nerve injury. J Neurol 214: 281 – 287

    Article  PubMed  Google Scholar 

  • Stöhr M, Petruch F, Scheglmann K, Schilling K (1978) Retrograde changes of nerve fibers with the Carpal Tunnel Syndrome. J Neurol 218: 287 – 292

    Article  Google Scholar 

  • Sumner A (1978) Physiology of dying-back neuropathies. In: Waxman SG (ed) Physiology and pathobiology of axons. Raven, New York, pp 349 – 359

    Google Scholar 

  • Swadlow HA, Waxman SG (1978) Activity-dependent variations in the conduction properties of central axons. In: Waxman SG (ed) Physiology and pathobiology of axons. Raven, New York, pp 191 – 202

    Google Scholar 

  • Tasaki I (1953) Nervous transmission. Thomas, Springfield, Ill.

    Google Scholar 

  • Tasaki I (1955) New measurement of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fiber. Am J Physiol 181: 639 – 650

    PubMed  CAS  Google Scholar 

  • Thomas PK (1960) Motor nerve conduction in the carpal tunnel syndrome. Neurology (Minneap) 10: 1045 – 1050

    Article  CAS  Google Scholar 

  • Waxman SG (1980 a) Determinations of conduction velocity in myelinated nerve fibers. Muscle Nerve 3:141 – 150

    Article  PubMed  CAS  Google Scholar 

  • Waxman SG (1980 b) The structural basis for axonal conduction abnormalities in demyelinating diseases: In: Desmedt JE (ed) Clinical uses of cerebral, brainstem and spinal somatosensory evoked potentials. Karger, Basel, pp 170 – 189

    Google Scholar 

  • Waxman SG, Bennett MVL (1972) Relative conduction velocities of small myelinated and non-myelinated fibres in the central nervous system. Nature 238: 217 – 219

    Article  CAS  Google Scholar 

  • Waxman SG, Brill MH (1978) Conduction through demyelinated plaques in multiple sclerosis: computer simulations of facilitation by short internodes. N Neurol Neurosurg Psychiatry 41: 408 – 416

    Article  CAS  Google Scholar 

  • Wood C, Allison T (1981) Interpretation of evoked potentials: A neurophysiological perspective. Can J Psychol 35: 113 – 135

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stöhr, M. (1996). Physiologie und Pathophysiologie der Impulsleitung. In: Evozierte Potentiale. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07146-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07146-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07147-2

  • Online ISBN: 978-3-662-07146-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics