On Symmetric Cournot-Nash Equilibrium Distributions in a Finite-Action, Atomless Game

  • M. Ali Khan
  • Ye Neng Sun
Part of the Studies in Economic Theory book series (ECON.THEORY, volume 1)

Abstract

We show that in a finite action, atomless game, every Cournot-Nash equilibrium distribution can “besymmetrized.” This yields an elementary proof of a result of Mas-Colell.

Keywords

Nash Rium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hildenbrand, W., 1974, Core and Equilibria of a Large Economy, Princeton University Press, Princeton, New Jersey.Google Scholar
  2. Jamison, R. E., 1974, “A Quick Proof for a One-Dimensional Version of Liapunoff’s Theorem,” Amer. Math. Monthly 81, 507–508.CrossRefGoogle Scholar
  3. Khan, M. Ali, 1989, “On Cournot-Nash Equilibrium Distributions for Games with a Non-Metrizable Action Space and Upper Semi-Continuous Payoffs,” Trans. Amer. Math. Soc. 315, 126–146.Google Scholar
  4. Khan, M. Ali and Sun, Y., 1990, “On a Reformation of Cournot-Nash Equilibria,” J. Math. Anal. Appl. 146, 442–460.CrossRefGoogle Scholar
  5. Mas-Colell, A., 1984, “On a Theorem of Schmeidler,” J. Math. Econ. 13, 210206.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • M. Ali Khan
  • Ye Neng Sun

There are no affiliations available

Personalised recommendations