Relationship of Metal Contaminants with Acid-Volatile Sulphides (AVS) in Tropical Estuarine Sediments: Potential Influence on Metal Distribution and Bioavailability

  • M. F. Carvalho
  • W. Machado
  • R. E. Santelli
  • J. E. L. Maddock
Part of the Environmental Science book series (ESE)


The river transport of anthropogenic trace metals to coastal areas and the extent to which these elements are trapped within coastal systems are issues of great interest (Salomons and Förstner 1984). Many studies have investigated the input of metals transported by estuarine waters to coastal areas and the ability of sediments to scavenge and retain them (e.g. Bricker 1993; Lacerda et al.1993; Puig et al.1999; Rozan and Benoit 1999). Besides the evident influence of fluctuating metal loading and hydrodynamic conditions, it has been widely demonstrated that the metal biogeochemistry in the water column and underlying sediments is critical in determining the efficiency of metal removal from waters by sediments. For example, changes in sediment chemistry can occur in conjunction with changes in overlying water redox conditions that may lead to the remobilisation of accumulated metals (Cooper and Morse 1996). However, remobilised elements may again be removed from the water column after being released from the sediments (Warnken et al. 2001). As the presence of geochemically reactive phases of trace metals may occur at elevated levels under a wide range of sedimentary conditions (e.g. due to variable redox conditions, differentiated organic matter supply and anthropogenic disturbances), research on the factors regulating the diagenetic behaviour of metals within sediments is essential to understanding the pathways of accumulation and transfer of these elements, their removal from the overlying waters and their potential bioavailability in each particular environmental condition.


Metal Contaminant Environ Toxicol Simultaneously Extract Metal Organic Matter Supply Sediment Accretion Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen HE, Fu G, Boothman W, Di Toro D, Mahony JD (1991) Analytical method for determination of acid volatile sulfides in sediment. U.S. Environmental Protection Agency, Washington (EPA 821/R-91–100)Google Scholar
  2. Allen HE, Fu G, Deng B (1993) Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals ( SEM) for the estimation of potential toxicity in aquatic sediments. Environ Toxicol Chem 12: 1441–1453CrossRefGoogle Scholar
  3. Ankley GT, Di Toro DM, Hansen DJ, Berry WJ (1996) Technical basis and proposal for deriving sediment quality criteria for metals. Environ Toxicol Chem 15: 2056–2066CrossRefGoogle Scholar
  4. Berg GA van den, Loch JPG, Heijdt LM van den, Zwolsman JJG (1998) Vertical distribution of acid-volatile sulfide and simultaneously extracted metals in a recent sedimentation area of the River Meuse in the Netherlands. Environ Toxicol Chem 17: 758–763CrossRefGoogle Scholar
  5. Bostick BC, Fendorf S, Fendorf M (2000) Disulfide disproportionation and CdS formation upon cadmium sorption on FeS2. Geochim Cosmochim Acta 64: 247–255CrossRefGoogle Scholar
  6. Bricker SB (1993) The history of Cu, Pb, and Zn inputs to Narragansett Bay, Rhode Island as recorded by salt-marshes sediments. Estuaries 16: 589–607CrossRefGoogle Scholar
  7. Bull DC, Williamson RB (2001) Prediction of principal metal-binding solid phases in estuarine sediments from color image analysis. Environ Sci Technol 35: 1658–1662CrossRefGoogle Scholar
  8. Caçador I, Vale C, Catarino F (1996) Accumulation of Zn, Pb, Cu, Cr and Ni in sediments between roots of the Tagus estuary salt marshes, Portugal. Estuar Coast Shelf Sci 42: 393–403CrossRefGoogle Scholar
  9. Carvalho MF (2001) O modelo AVS contribuindo na avaliaçâo do grau de remobilizaçâo e da biodisponibilidade de metais em ecossistemas aquaticos. PhD Thesis, Universidade Federal Fluminense, NiteróiGoogle Scholar
  10. Carvalho CEV, Lacerda LD (1992) Heavy metals in the Guanabara Bay biota: why such low concentrations? Ciência and Cultura 44: 184–186Google Scholar
  11. Carvalho CN, Schorcher (1982) Geochemical studies of the River Sarapui (tributary of Guanabara Bay) - Rio de Janeiro, Brazil. Environ Technol Lett 3: 425–432CrossRefGoogle Scholar
  12. Carvalho CEV, Lacerda LD, Gomes MP (1991) Heavy metal contamination of the marine biota along the Rio de Janeiro Coast, SE Brazil. Wat Air Soil Pollut 57 /58: 645–653Google Scholar
  13. Carvalho MF, Maddock JEL, Santelli RE, Moscatelli M, Vital NA (1999) Availability and toxicity of metals in Sarapuí River, Guanabara Bay, RJ - Brazil, bordered by an urban landfill and under influence of an oil refinery. In: Environmental Geochemistry in Tropical Countries. Proceedings of the 3rd International Symposium, Nova Friburgo, RJ, UFF/Programa de Geoquímica, Niterói, Brazil (CD-ROM)Google Scholar
  14. Cassella RJ, de Oliveira LG, Santelli RE (1999) On line dissolution of ZnS for sulfide determination in stabilized water samples with zinc acetate using spectrophotometry by methylene blue method. Spectroscopy Lett 32: 469–484CrossRefGoogle Scholar
  15. Chapman PM, Wang F, Janssen C, Persoone G, Allen HE (1998) Ecotoxicology of metals in aquatic sediments: binding and release, bioavilability, risk assessment, and remediation. Can J Fish Aquat Sci 55: 2221–2243CrossRefGoogle Scholar
  16. Cognetti G (2001) Marine eutrophication: the need for a new indicator system. Mar Pollut Bull 42x63–164Google Scholar
  17. Cooper DC, Morse JW (1996) The chemistry of Offatts Bayou, Texas: a seasonally highly sulfidic basin. Estuaries 19:595–611CrossRefGoogle Scholar
  18. Cooper DC, Morse JW (1998) Biogeochemical controls on trace metal cycling in marine anoxic sediments. Environ Sci Technol 32:327–330CrossRefGoogle Scholar
  19. Di Toro DM, Mahony JD, Hansen DJ, Scott KJ, Hicks MB, Mayr SM (1990) Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environ Toxicol Chem 9: 1487–1502CrossRefGoogle Scholar
  20. Di Toro DM, Mahony JD, Hansen DJ, Scott KJ, Carlson AR, Ankley GT (1992) Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ Sci Technol 26:96–101CrossRefGoogle Scholar
  21. Gagnon C, Mucci A, Pelletier E (1995) Anomalous accumulation of acid-volatile sulphides (AVS) in a coastal marine sediment, Saguenay Fjord, Canada. Geochim Cosmochim Acta 59: 2663–2675Google Scholar
  22. Godoy JM, Moreira I, Bragança MJ, Wanderley C, Mendes LB (1998) A study of Guanabara Bay sedimentation rates. J Radioanal Nucl Chem 227: 157–160CrossRefGoogle Scholar
  23. Hare L, Carignan R, Huerta-Diaz MA (1994) A field study of metal toxicity and accumulation by benthic invertebrates; implications for the acid-volatile sulfide (AVS) model. Limnol Oceanogr 39: 1653–1668Google Scholar
  24. Jean GE, Bancroft M (1986) Heavy metal adsorption by sulphide mineral surfaces. Geochim Cosmochim Acta 50: 1455–1463CrossRefGoogle Scholar
  25. Kjerfve B, Ribeiro CHA, Dias GTM, Filippo AM, Quaresma VS (1998) Oceanographic characteristics of an impacted coastal bay: Baía de Guanabara, Rio de Janeiro, Brazil. Cont Shelf Res 17: 1609–1643CrossRefGoogle Scholar
  26. Lacerda LD, Carvalho CEV, Rezende CE, Pfeiffer WC (1993) Mercury in sediments from the Paraiba do Sul River continental shelf, SE Brazil. Mar Pollut Bull 26: 220–222CrossRefGoogle Scholar
  27. Lasorsa B, Casas A (1996) A comparison of sample handling and analytical methods for determination of acid volatile sulfides in sediment. Mar Chem 52: 211–220CrossRefGoogle Scholar
  28. Lee J-S, Lee B-G, Luoma SN, Choi HJ, Koh C-H, Brown CL (2000) Influence of acid volatile sulfides and metal concentrations on metal partitioning in contaminated sediments. Environ Sci Technol 34:4511–4516CrossRefGoogle Scholar
  29. Luoma SN (1995) Prediction of metal toxicity in nature from bioassays: limitations and research needs. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. John Wiley & Sons, Chichester, pp 609–659Google Scholar
  30. Machado W, Moscatelli M, Rezende LG, Lacerda LD (2002) Mercury, zinc, and copper accumulation in mangrove sediments surrounding a large landfill in southeast Brazil. Environ Pollut 120:455–461CrossRefGoogle Scholar
  31. Mackey AP, Mackay S (1996) Spatial distribution of acid-volatile sulphide concentration and metal bioavailability in mangrove sediments from the Brisbane River, Australia. Environ Pollut 93: 205–209CrossRefGoogle Scholar
  32. Madureira MJ, Vale C, Simoes Gonçalves ML (1997) Effect of plants on sulfur geochemistry in the Tagussalt-marshes sediments. Mar Chem 58:27–37CrossRefGoogle Scholar
  33. Meyer LM, Chen Z, Findley RH, Fang J, Sampson S, Self RFL, Jumars PA, Quetel C, Donard OFX (1996) Bioavailability of sedimentary contaminants subjected to deposit-feeders digestion. Environ Sci Technol 30: 2641–2645CrossRefGoogle Scholar
  34. Moraes RBC, Pfeiffer WC, Guimarâes JRD, Borges ALN, Campos AN (2000) Development of toxicity test with tropical peneid shrimps. Environ Toxicol Chem 19: 1881–1884CrossRefGoogle Scholar
  35. Morse JW, Arakaki T (1993) Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochim Cosmochim Acta 57:3635–3640Google Scholar
  36. Morse JW, Luther GW (1999) Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim Cosmochim Acta 62:3373–3378CrossRefGoogle Scholar
  37. Müller A (2002) Organic carbon burial rates, and carbon and sulfur relationships in coastal sediments of the southern Baltic Sea. Appl Geochem 17:337–352CrossRefGoogle Scholar
  38. Perin G, Fabris R, Manente S, Rebello Wagener A, Hamacher C, Scotto S (1997) A five-year study on the heavy metal pollution of Guanabara bay sediments ( Rio de Janeiro, Brazil) and evaluation of the metal bioavialability by means of geochemical speciation. Wat Res 12: 3017–3028CrossRefGoogle Scholar
  39. Peterson GS, Ankley GT, Leonard EN (1996) Effect of bioturbation on metal-sulfide oxidation in surficial freshwaters sediments. Environ Toxicol Chem 15: 2147–2155Google Scholar
  40. Puig P, Palanques A, Sanchez-Cabeza JA, Masqué P (1999) Heavy metals in particulate matter and sediments in the southern Barcelona sedimentation system ( North-western Mediterranean ). Mar Chem 63: 311–329CrossRefGoogle Scholar
  41. Rebello AL, Haekel W, Moreira I, Santelli R, Schroeder F (1986) The fate of heavy metals in an estuarine tropical system. Mar Chem 18: 215–225CrossRefGoogle Scholar
  42. Rozan TF, Benoit G (1999) Heavy metal removal efficiencies in a river-marsh system estimated from patterns of metal accumulation in sediments. Mar Environ Res 48:335–351CrossRefGoogle Scholar
  43. Salomons W, Förstner U (1984) Metals in the Hydrocycle. Springer-Verlag, BerlinCrossRefGoogle Scholar
  44. Simpson SL, Apte SL, Batley GE (1998) Effect of short-term resuspension events on trace metal speciation in polluted anoxic sediments. Environ Sci Technol 32: 620–625CrossRefGoogle Scholar
  45. Souza CMM de, Pestana MHD, Lacerda LD (1986) Geochemical partitioning of heavy metals in sediments of three estuaries along the coast of Rio de Janeiro ( Brazil ). Sci Total Environ 58: 63–72CrossRefGoogle Scholar
  46. Sundby B (1994) Sediment-water exchange processes. In: Hamelink JL, Landrum PF, Bergman HL, Benson WH (eds) Bioavailability: physical, chemical, and biological interactions. CRC Press, Boca Raton, pp 143–153Google Scholar
  47. Warnken KW, Gill GA, Griffin LL, Santschi PH (2001) Sediment-water exchange of Mn, Fe, Ni and Zn in Galveston Bay, Texas. Mar Chem 73: 215–231CrossRefGoogle Scholar
  48. Wasserman JC, Freitas-Pinto AAP, Amouroux D (2000) Mercury concentrations in sediment profiles of a degraded tropical coastal environment. Environ Technol 21:297–305CrossRefGoogle Scholar
  49. Wijsman JWM, Herman PMJ, Gomoiu MT (1999) Spatial distribution in sediment characteristics and benthic activity on the northwestern Black Sea shelf. Mar Ecol Prog Ser 181:25–39CrossRefGoogle Scholar
  50. Wijsman JWM, Middelburg JJ, Herman PMJ, Böttcher ME, Heip CHR (2001) Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea. Mar Chem 74: 261–278CrossRefGoogle Scholar
  51. Zhuang Y, Allen HE, Fu G (1994) Effect of aeration of sediment on cadmium binding. Environ Toxicol Chem 13: 717–724CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • M. F. Carvalho
  • W. Machado
  • R. E. Santelli
  • J. E. L. Maddock

There are no affiliations available

Personalised recommendations