A photograph records the real image of an object formed by a lens. A hologram, however, records the field distribution that results from the light scattered by an object. Since there is a one-to-one correspondence between the object and its scattered field, it is possible to record information about the object by mapping the scattered field. Actually the recording of the scattered field provides much more information about the object than that of the real image recorded in a photograph. For instance, one hologram can readily generate different real images that correspond to different viewing angles.


Reconstructed Image Real Image Speckle Pattern Fringe Pattern Reference Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 8.1
    J. W. Goodman: Introduction to Fourier Optics ( McGraw-Hill, New York 1968 )Google Scholar
  2. 8.2
    W. T. Cathey: Optical Information Processing and Holography ( Wiley, New York 1974 )Google Scholar
  3. 8.3
    M. Akagi, T. Kaneko, T. Ishiba: Electron micrographs of hologram cross sections, Appl. Phys. Lett. 21, 93–95 (1972)Google Scholar
  4. 8.4
    H. M. Smith (ed.): Holographic Recording Materials, Topics in Appl. Phys., Vol. 20 ( Springer, Berlin, Heidelberg 1977 )Google Scholar
  5. 8.5
    R. J. Collier, C. B. Buckhardt, L. H. Lin: Optical Holography ( Academic, New York 1971 )Google Scholar
  6. 8.6
    T. S. Huang: Digital holography, Proc. IEEE, 59, 1335–1346 (1971)Google Scholar
  7. 8.7
    W. H. Lee: Sampled Fourier transform hologram generated by computer, Appl. Opt. 9, 639–643 (1970)ADSGoogle Scholar
  8. 8.8
    M. C. King, A. M. Noll, D. H. Berry: A new approach to computer-generated holography, Appl. Opt. 9, 471–475 (1970)ADSGoogle Scholar
  9. 8.9
    W. J. Dallas: In The Computer in Optical Research, ed. by B. R. Frieden, Topics in Appl. Phys., Vol. 41 ( Springer, Berlin, Heidelberg 1980 )Google Scholar
  10. 8.10
    S. A. Benton: In Applications of Holography and Optical Data Processing, ed. by E. Marom, A. A. Friesem, W. Wiener-Avenear ( Pergamon, New York 1977 ) pp. 401–409Google Scholar
  11. 8.11
    S. A. Benton: Hologram reconstruction with expanded light sources, J. Opt. Soc. Am. 59, 1545 A (1969)Google Scholar
  12. 8.12
    J. C. Dainty (ed.): Laser Speckle and Related Phenomena, 2nd ed., Topics in Appl. Phys., Vol. 9 ( Springer, Berlin, Heidelberg 1984 )Google Scholar
  13. 8.13
    D. Gabor: Light and information, Prog. Opt., 1, 109–153 (1961)CrossRefGoogle Scholar
  14. 8.14
    B. R Frieden: Probability, Statistical Optics, and Data Testing, Springer Ser. Inform. Sci., Vol. 10 ( Springer, Berlin, Heidelberg 1983 )Google Scholar
  15. 8.15
    W. Schumann, M. Dubas: Holographic Interferometry, Springer Ser. Opt. Sci., Vol. 16 ( Springer, Berlin, Heidelberg 1979 )Google Scholar
  16. 8.16
    Y. I. Ostrovsky, M. M. Butusov, G. V. Ostrovskaya: Interferometry by Holography, Springer Ser. Opt. Sci., Vol. 10 ( Springer, Berlin, Heidelberg 1980 )Google Scholar
  17. 8.17
    C. Knox, R E. Brooks: Holographic motion picture microscopy, Proc. Roy. Soc. (London) B174, 115–121 (1969)ADSCrossRefGoogle Scholar
  18. 8.18
    D. H. McMahon: Holographic ultrafiche, Appl. Opt. 11, 798–806 (1972)ADSGoogle Scholar
  19. 8.19
    Y. Takeda, Y. Oshida, Y. Miyamura: Random phase shifters for Fourier transformed holograms, Appl. Opt. 11, No. 4, 818–822 (1972)ADSGoogle Scholar
  20. 8.20
    A. Ioka, K. Kurahashi: Grating modulated phase plates for holographic storage, Appl. Opt. 14, 2267–2273 (1975)ADSGoogle Scholar
  21. 8.21
    Y. Tsunoda, Y. Takeda: High density image-storage holograms by a random phase sampling method, Appl. Opt. 13, 2046–2051 (1974)ADSGoogle Scholar
  22. 8.22
    L. K. Anderson: Holographic Optical Memory for Bulk Data Storage, Bell Laboratories Records, 319–325 (Nov. 1968)Google Scholar
  23. 8.23
    K. Kubota, Y. Ono, M. Kondo, S. Sugama, N. Nishida, M. Sakaguchi: Holographic disk with high data transfer rate; its application to an audio response memory, Appl. Opt. 19, 944–951 (1980)ADSGoogle Scholar
  24. 8.
    D. J. Channin, A. Sussman: In Display Devices,ed. by J. I. Pankove, Topics Appl. Phys., Vol 40 (Springer, Berlin, Heidelberg 1980) Chap. 4Google Scholar
  25. 8.25
    A. Engel, J. Steffen, G. Herziger: Laser machining with modulated zone plates, Appl. Opt. 13, 269–273 (1974)ADSGoogle Scholar
  26. 8.26
    S. Amadesi, F. Gori, R. Grella, G. Guattari: Holographic methods for painting diagnostics, Appl. Opt. 13, 2009–2013 (1974)ADSGoogle Scholar
  27. 8.27
    G. von Bally (ed.): Holography in Medicine and Biology, Springer Ser. Opt. Sci., Vol. 18 ( Springer, Berlin, Heidelberg 1979 )Google Scholar
  28. 8.28
    A. J. MacGovern, J. C. Wyant: Computer generated holograms for testing optical elements, Appl. Opt. 10, 619–624 (1971)ADSGoogle Scholar
  29. 8.29
    K. Bromley, M. A. M.nahan, J. F. Bryant, B. J. Thompson: Holographic subtraction, Appl. Opt. 10, 174–181 (1971)Google Scholar
  30. 8.30
    C. Agren, K. A. Stetson: Measuring the wood resonance of treble viol plates by hologram interferometry, J. Acoust. Soc. Am. 46, 120 (1969)ADSCrossRefGoogle Scholar
  31. 8.31
    W. Schmidt, A. Vogel, D. Preusser: Holographic contour mapping using a dye laser, Appl. Phys. 1, 103–109 (1973)Google Scholar
  32. 8.32
    L. O. Heflinger, R. F. Wuerker: Holographic contouring via multifrequency lasers, Appl. Phys. Lett., 15, 28–30 (1969)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Keigo Iizuka
    • 1
  1. 1.Department of Electrical EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations