Skip to main content

Thermochemische Umwandlung

  • Chapter
Energie aus Biomasse

Zusammenfassung

Neben der klassischen Verbrennung, die in Kapitel 9 diskutiert wurde, kann feste Biomasse über eine thermochemische Umwandlung zunächst in einen Sekundärenergieträger umgewandelt werden, der bezüglich der Handhabung und der Konversionsmöglichkeiten in End- bzw. Nutzenergie einige entscheidende Vorteile aufweist. Dabei laufen grundsätzlich die gleichen Umwandlungsprozesse ab, wie sie auch bei der Verbrennung gegeben sind. Die einzelnen Stufen der thermochemischen Umwandlung werden jedoch — im Unterschied zu der Verbrennung — räumlich und zeitlich getrennt realisiert. Vor diesem Hintergrund ist es das Ziel der folgenden Ausführungen, zunächst die Vergasung und damit die Bereitstellung eines gasförmigen Energieträgers ausführlich darzustellen. Im anschließenden Kapitel 10.2 wird die Pyrolyse diskutiert, die das Ziel hat, einen flüssigen Energieträger — in Kuppelproduktion mit einem festen und einem gasförmigen Energieträger — bereitzustellen. Danach wird noch auf die Holzkohleproduktion und damit die Bereitstellung eines festen Energieträgers eingegangen (Kapitel 10.3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adlhoch, W., Keller, J., Herbert, P.K.: Das Rheinbraun-HTW-Kohlevergasungsverfahren. VGB-Konferenz Kohlevergasung 1991, Dortmund, 1991

    Google Scholar 

  2. von Kienle, H.; Bäder, E.: Aktivkohle und ihre industrielle Anwendung. Ferdinand Enke, Stuttgart, 1980

    Google Scholar 

  3. Albrecht, J.; Schelhaus, K.P.: CFB Gasification of Low-grade Fuels. In: Sipilä, K.; Korhonen, M. (Eds.): Power Production from Biomass III. Gasification and Pyrolysis RandDandD for Industry; VTT Syposium 192, Espoo, 1999, S. 151–162

    Google Scholar 

  4. Anderl, H.; Mory, A.: Operation Experiences in the CFB Gasification Project BioCoComb for Biomass with Co-combustion of the Gas in a PF Boiler at Zeltweg Power Plant, Austria. In: Kaltschmitt, M.; Bridgwater, A.V. (Eds.): Biomass Gasification and Pyrolysis — State of the art and future prospects; CPL Press, Newbury, 1997, S. 195–212

    Google Scholar 

  5. Andrews, R.G.; Zukowski, S.; Patnaik, P.C.: Feasibility of firing an industrial gas turbine using a biomass derived fuel. In: Bridgwater, A.V.; Boocock, D.G.B. (Eds.): Developments in Thermochemical Biomass Conversion; Blackie Academic, London, 1997, S. 495–506

    Google Scholar 

  6. Antal, M.J.J.; Varhegyi, G.: Cellulose pyrolysis kinetics: The current state of knowledge. Ind. Eng. Chem. Res. 34 (1995), S. 703–717

    Article  Google Scholar 

  7. Babu, S.: IEA-Bioenergy, Annual Report 1999; IGT, Chicago, 2000

    Google Scholar 

  8. Baldauf, W.; Balfanz, U.: Upgrading of fast pyrolysis liquids at VEBA OEL AG. In: Kaltschmitt, M.; Bridgwater, A.V. (Eds.): Biomass Gasification and Pyrolysis — State of the art and future prospects; CPL Press, Newbury, 1997, S. 392–398

    Google Scholar 

  9. Barducci, D.; Polzinetti, U.: Thermic and Electric Power Production and Use from Gasification of Biomass and RDF: Experience at CFBG Plant at Greve in Chianti. 2“d Biomass Conference of the Americas, Portland, Oregon, USA, 1995

    Google Scholar 

  10. Beenackers, A.A.C.M.; Maniatis, K.: Gasification Technologies for Heat and Power from Biomass. In: Kaltschmitt, M.; Bridgwater, A.V. (Eds.): Biomass Gasification and Pyrolysis — State of the art and future prospects; CPL Press, Newbury, 1997, S. 24–52

    Google Scholar 

  11. Bierter, W.; Gaegauf, C.: Holzvergasung. C. F. Müller, Karlsruhe, 1982

    Google Scholar 

  12. Biomass Power Program Overview — Advanced Biomass Gasification Projects. DOE[GO-10097–412, Washington, Aug. 1997

    Google Scholar 

  13. ] Biomass Technology Group (BTG), interne Arbeitsunterlage, Enschede, Niederlande

    Google Scholar 

  14. Bridgwater, A.V.; Kuester, J.L. (Eds.): Research in Thermochemical Biomass Conversion. Elsevier Appl. Sci., London, 1988

    Google Scholar 

  15. Bridgwater, A.V.; Bridge, S.A.: A review of biomass pyrolysis and pyrolysis technologies. In: Bridgwater, A.V.; Grassi, G. (Eds.): Biomass Pyrolysis Liquids Upgrading and Utilization; Elsevier Appl. Sci., London, 1991, S. 11–92

    Chapter  Google Scholar 

  16. Bridgwater, A.V. (Eds.): Advances in Thermochemical Biomass Conversion. Blackie Academic and Professional, London, 1993

    Google Scholar 

  17. Bridgwater, A.V.; Boocock, D.G.B. (Eds.): Developments in Thermochemical Biomass Conversion. Blackie Academic and Professional, London, 1997

    Google Scholar 

  18. Bridgwater, A.V.; Peacocke, G.V.C: Biomass pyrolysis technologies. Sustainable and Renewable Energy Review 4 (1999), S. 1–73

    Article  Google Scholar 

  19. Bridgwater, A.V.; Czernik, S.; Meier, D.; Piskorz, J.: Fast pyrolysis technology. In: Overend, R.P.; Chornet, E. (Eds.): Biomass–A growth opportunity in green energy and value-added products, Proceedings of the 4th Biomass Conference of the Americas, Pergamon Elsevier, Oxford, 1999, S. 1217–1223

    Google Scholar 

  20. Bühler, R.: Fixed bed Gasification for Electricity Generation Application in Europe. In: Kaltschmitt, M.; Bridgwater, A.V. (Eds.): Biomass Gasification and Pyrolysis — State of the art and future prospects; CPL Press, Newbury, 1997, S. 117–128

    Google Scholar 

  21. Bürkholz, A.: Droplet Separation. VHC Verlagsgesellschaft, Weinheim, 1989

    Google Scholar 

  22. Chum, H.; Diebold, J.; Scahill, J.; Johnson, D.; Black, S.; Schroeder, H.; Kreibich, R.E.: Adhesives from Renewable Resources. In: Conner, R.W.H.A.H. (Eds.), Biomass pyrolysis oil feedstocks for phenolic adhesives; ACS Symp. Series, 1989, S. 135–151

    Google Scholar 

  23. Corella, J.; Orio, A.; Toledo; J.-M.: Biomass Gasification with Air in a Fluidized Bed: Exhaustive Tar Elimination with Commercial Steam Reforming Catalysts. Energy and Fuels 13 (1999), 3, S. 702–709

    Article  Google Scholar 

  24. Dayton, D.C.; Milne, T.A.: Alkali, chlorine, SOx, and NOx release during combustion of pyrolysis oils and chars. In: Biomass Pyrolysis Oil Properties and Combustion Meeting; Estes Park, USA, 1994, S. 296–308

    Google Scholar 

  25. DeGroot, W.F.; Pan, W.P.; Rahman, M.D.; Richards, G.N.: First chemical events in pyrolysis of wood. J. Anal. Appl. Pyrolysis 13 (1988), S. 221–231

    Article  Google Scholar 

  26. Deutsches Institut für Normung (Eds.): DIN 51 749 “Prüfung fester Brennstoffe; Grill-Holzkohle und Grill-Holzkohlenbriketts — Anforderungen, Prüfungen”. Beuth, Berlin, 1978

    Google Scholar 

  27. Diebold, J.P.: A review of the toxicity of biomass pyrolysis liquids formed at low temperatures. In: Bridgwater, A.; Czernik, S.; Diebold, J.; Meier, D.; Oasmaa, A.; Peacocke, C.; Piskorz, J.; Radlein, D. (Eds.): Fast Pyrolysis of Biomass: A Handbook. CPL Press, Newbury, 1999, S. 135–163

    Google Scholar 

  28. Diebold, J.P.; Scahill, J.W.: Improvements in the vortex reactor design. In: Bridgwater, A.V.; Boocock, D.G.B. (Eds.): Developments in Thermochemical Biomass Conversion; Blackie Academic, London, 1997, S. 242–252

    Google Scholar 

  29. Earl, D.E.: A Report on Charcoal. An Andre Mayer Fellowship Report, FAO, Rome, 1974

    Google Scholar 

  30. Emrich, W.: Handbook of Charcoal Making — The traditional and Industrial Methods; Solar Energy R and D in the European Community, Series E, Volume 7, Energy from Biomass; D. Reidel Publishing Company, Dordrecht[Boston[Lancaster, 1978

    Google Scholar 

  31. Czernik, S.; Scahill, J.; Diebold, J.: The production of liquid fuel by fast pyrolysis of biomass. Proc. Intersoc. Energy Convers. Eng. Conf. 1993, S. 2429–2436

    Google Scholar 

  32. European Commission, DG XVII (Eds.): Biomass Gasification Targeted Projects, Newsletter Nr. 2, 1997

    Google Scholar 

  33. Faix, O.: Mitteilung aus dem Institut für Holzchemie der Bundesforschungsanstalt für Forst-und Holzwirtschaft, Hamburg, 1999

    Google Scholar 

  34. Faix, O.; Meier, D.; Fortmann, I.: Pyrolysis-gas chromatography-mass spectrometry of two trimeric lignin model compounds with alkyl-aryl ether structure. J. Anal. Appl. Pyrolysis 14 (1988), S. 115–148

    Article  Google Scholar 

  35. Farris, M.; Paisley, M.A.; Irving, J.; Overend, R.P.: The Battelle[FERCO Biomass Gasification Process. In: Sipilä, K.; Korhonen, M. (Eds.): Power Production from Biomass III. Gasification and Pyrolysis RandDandD for Industry; VTT Syposium 192, Espoo, 1999, S. 87–102

    Google Scholar 

  36. Fercher, E.; Hofbauer, H; Fleck, T.; Rauch, R.; Veronik, G.: Two Years Experience with the FICFB-Gasification Process. Biomass for Energy and Industry. 10th European Conference and Technology Exhibition, Würzburg, Juni 1998, S. 280–283

    Google Scholar 

  37. French, R.J.; Milne, T.A.: Vapor phase release of alkali species in the combustion of biomass pyrolysis oils. Biomass and Bioenergy 7 (1994), S. 315–325

    Article  Google Scholar 

  38. Gatzke, H.: Holzvergasungsanlage für Kraft-Wärme-Kopplung mit Drehrost und Gasmotor am Beispiel der Anlage in Harbore (Dänemark). Fachtagung “Holzvergasung — Teil der Strategie zur CO2-Minderung”, Elsterwerda, April 2000, S. 34–43

    Google Scholar 

  39. ] Gericke, B.; Löffler, J. C.; Perkavec, M.A.: Biomassenverstromung durch Vergasung and integrierte Gasturbinenprozesse. VGB Kraftwerkstechnik 74(1994), 7, 5.595–604

    Google Scholar 

  40. Girard, P.; Mouras, S.: Pyrolysis environment, health and safety issues output from the PyNe network. In: Overend, R.P.; Chornet, E. (Eds.): Biomass–A growth opportunity in green energy and value-added products, Proceedings of the 4th Biomass Conference of the Americas; Pergamon Elsevier, Oxford, 1999, S. 1269–1273

    Google Scholar 

  41. Gil, J.; Corella, J.; Aznar, M.P.; Caballero, M.A.: Biomass Gasification in Athmospheric and Bubbling Fluidized Bed: Effect of the Type of Gasifying Agent an the Product Distribution. Biomass and Bioenergy 16 (1999), S. 1–15

    Article  Google Scholar 

  42. Gläser, H. u. a.: Chemische Technologie des Holzes. Carl Hanser, München, 1954

    Google Scholar 

  43. Goring, D.A.; Timell, T.E.: Molecular weight of native celluloses. TAPPI 45 (1962), S. 454–460

    Google Scholar 

  44. Goudriaan, F.; Peferoen, D.G.R.: Liquid fuels from biomass via a hydrothermal process. Chem. Eng. Sci. 45 (1995), S. 2729–2734

    Google Scholar 

  45. ] Goudriaan, F.; Naber, J.E.: Development of the Shell hydrothermal upgrading process. PyNe Newsletter 4(1997), Aston University, Birmingham

    Google Scholar 

  46. Graham, R.G.; Bergougnou, M.A.; Mok, L.K.; Freel, B.A.; de Lasa, H.I.: Continuous fast pyrolysis of biomass using solid heat carriers. In: Klass, D.L. (Eds.): Energy from Biomass and Wastes VIII; Institute of Gas Technology, 1984, S. 1419–1433

    Google Scholar 

  47. Graham, R.G.; Fred, B.A.; Bergougnou, M.A.: The production of pyrolytic liquids, gas, and char from wood and cellulose by fast pyrolysis. In: Bridgwater, A.V.; Kuester, L.J. (Eds.): Res. Thermochem. Biomass Convers.; Elsevier, London, 1988, S. 629–641

    Chapter  Google Scholar 

  48. Graham, R.G.; Freel, B.A.; Bergougnou, M.A.: Rapid thermal processing (RTP): Biomass fast pyrolysis overview. In: Hogan, E.; Robert, J.; Grassi, G.; Bridgwater, A.V. (Eds.): Biomass Thermal Processing; CPL Press, Newbury, 1992, S. 52–63

    Google Scholar 

  49. Gust, S.: Combustion experience of flash pyrolysis fuel in intermediate size boilers. In: Bridgwater, A.V.; Boocock, D.G.B. (Eds.): Developments in Thermo-chemical Biomass Conversion; Blackie Academic, London, 1997, S. 481–494

    Google Scholar 

  50. Gust, S.: Combustion of pyrolysis liquids. In: Kaltschmitt, M.; Bridgwater, A.V. (Eds.): Biomass Gasification and Pyrolysis — State of the art and future prospects; CPL Press, Newbury, 1997, S. 498–503

    Google Scholar 

  51. Haavisto I.: Fixed Bed Gasification for Heat Production. In: Kaltschmitt, M.; Bridgwater, A.V. (Eds.): Biomass Gasification and Pyrolysis — State of the art and future prospects; CPL Press, Newbury, 1997, S. 99–104

    Google Scholar 

  52. Hallgren, A.; Andersson, L.A.; Bjerle, I.: High Temperature Gasification of Biomass in an Athmospheric Entrained Flow Reactor. In: Bridgwater, A.V. (Eds.): Advances in Thermochemical Biomass Conversion; Blackie Academic and Professional, London, 1993, S. 338–349

    Google Scholar 

  53. Hasler, P.; Morf, P.; Buehler, R.; Nussbaumer, T.: Gas Cleaning and Waste Water Treatment for Small Scale Biomass Gasifiers. Bundesamt für Energie, Bern, 1998

    Google Scholar 

  54. Hasler, P.; Buehler, R.; Nussbaumer, T.: Gas Cleaning for Biomass Gasification. In: Sipilä, K.; Korhonen, M. (Eds.): Power Production from Biomass Ili. Gasification and Pyrolysis RandDandD for Industry; VTT Syposium 192, Espoo, 1999, S. 371–382

    Google Scholar 

  55. Herdin, G.; Wagner, M.: Engine Use of Producer Gas, Experiences and Requirements. In: Sipilä, K.; Korhonen, M. (Eds.): Power Production from Biomass III. Gasification and Pyrolysis RandDandD for Industry; VTT Syposium 192, Espoo, 1999, S. 231–248

    Google Scholar 

  56. Himmelblau, D.A.; Grozdits, G.A.: Production and performance of wood composite adhesives with air-blown, fluidized-bed pyrolysis oil. In: Overend, R.P.; Chornet, E. (Eds.): Biomass–A growth opportunity in green energy and value-added products, Proceedings of the 4th Biomass Conference of the Americas; Pergamon Elsevier, Oxford, 1999, S. 541–547

    Google Scholar 

  57. Hofbauer, H.: Thermische Biomassenutzung in Österreich. VEÖ-Journal 1999, 67, S. 66–71

    Google Scholar 

  58. Hofbauer, H.; Fleck, T.; Veronik, G.: Gasification Feedstock Database. IEA Bio-energy Agreement, Task XIII, Activity 3, Technische Universität Wien, 1997

    Google Scholar 

  59. Humphrey, F.R.; Ironside, G.E.: Charcoal from New South Wales Timber Species. Technical Paper 23, Forestry Commission of N.S.W, 1974

    Google Scholar 

  60. ] Kaltschmitt, M.; Rösch, C.; Dinkelbach, L. (Eds.): Biomass Gasification in Europe. European Commission, DG XII, Brüssel, Belgien

    Google Scholar 

  61. Kaltschmitt, M.; Kwant, K. W. (Eds.): Biomass Market Introduction - How to overcome the Non-technical Barriers for a Wider Use of Biomass Gasification in Europe. Novem, Utrecht, Niederlande, 1998

    Google Scholar 

  62. Kelly, S.S.; Wang, X.M.; Myers, M.D.; Johnson, D.K.; Scahill, J.W.: Use of biomass pyrolysis oils for preparation of modified phenol formaldehyde resins. In: Bridgwater A.V.; Boocock, D.G.B (Eds.): Developments in Thermochemical Biomass Conversion; Chapman and Hall, London, 1997, S. 557–572

    Google Scholar 

  63. Knoef, H.A.M.: Status and Development of Fixed Bed Gasification. Report EWAB 9929, Novem, Utrecht, 2000

    Google Scholar 

  64. Koljonen, J.; Kurkela, E.; Wilen, C.: Peat-based HTW-plant at Oulu. Bioresource Technology 46 (1993), S. 95–101

    Article  Google Scholar 

  65. Kubessa, M.: Holzvergasungsanlage mit Blockheizkraftwerk im Biomasse-Verwertungszentrum Espenhain. Fachtagung “Holzvergasung — Teil der Strategie zur CO2-Minderung”, Elsterwerda, April 2000, S. 28–31

    Google Scholar 

  66. Kwant, K.: Status of gasification in Countries Participating in the IEA Bioenergy Gasification Activity. Report, IEA-Bioenergy, Task 20, Novem, Utrecht, April 2000

    Google Scholar 

  67. Larson, E.D; Katofsky, R.E.: Production of Hydrogen and Methanol via Biomass Gasification. In: Bridgwater, A.V. (Eds.): Advances in Thermochemical Biomass Conversion; Blackie Academic and Professional, London, 1993, S. 495–510

    Google Scholar 

  68. Léde, J.; Verzaro, F.; Li, H.Z.; Villermaux, J.: Fast pyrolysis of wood in a cyclone reactor. Fuel 64 (1985), S. 1514–1520

    Article  Google Scholar 

  69. Léde, J.; Li, H.Z.; Villermaux, J.: Fusion-like behaviour of wood pyrolysis. J. Anal. Appl. Pyrolysis 10 (1987), S. 291–308

    Article  Google Scholar 

  70. Leech, J.: Running a dual fuel diesel engine on crude pyrolysis oil. In: Kaltschmitt, M.; Bridgwater, A.V. (Eds.): Biomass Gasification and Pyrolysis — State of the art and future prospects; CPL Press, Newbury, 1997, S. 495–497

    Google Scholar 

  71. Leppälahti, J.; Koljonen,T.: Nitrogen Evolution from Coal, Peat and Wood during Gasification: Literature Review. Fuel Processing Technology 43 (1995), S. 1–45

    Article  Google Scholar 

  72. Lindblad, A.R.: Preparation of oils from wood by hydrogenation. Ing. Vetenskaps Akad. Handl. 107 (1931), S. 7–59

    Google Scholar 

  73. Longley, C.J.; Howard, J.; Fung, D.P.C.: Levoglucosan recovery from cellulose and wood pyrolysis liquids. In: Bridgwater; A. V. (Eds.): Adv. Thermochem. Biomass Convers.; Blackie, 1994, S. 1441–1451

    Google Scholar 

  74. Lyytinen, H.: Biomass Gasification as a Fuel Supply for Lime Kilns: Description of Recent Installations. Tappi Journal 1987, S. 77–80

    Google Scholar 

  75. Majerski, P.; Piskorz, J.; Radlein, D.: Production of organic slow release fertiliser from biomass. US Patent 5 676 727, 1997

    Google Scholar 

  76. Maniatis, K.: Overview of EU Thermie Gasification projects. In: Sipilä, K.; Kor-honen, M. (Eds.): Power Production from Biomass III. Gasification and Pyrolysis RandDandD for Industry. VTT Syposium 192, Espoo, 1999, S. 9–34

    Google Scholar 

  77. Marutzki, R.: Möglichkeiten zur Vergasung und Verkohlung von Holz und ande- ren pflanzlichen Reststoffen. Holz-Zentralblatt, Nr. 19, 1981, S. 315–317

    Google Scholar 

  78. Meier, D.; Wehlte, S.; Simon, C.; 011esch, T.: Stoffliche Verwertung von nicht naturbelassenen Holzresten durch Pyrolyse in der Wirbelschicht. Abschlussbericht zum Projekt 03 631, Deutsche Bundesstiftung Umwelt, Osnabrück, 1998

    Google Scholar 

  79. Meier, D.; Faix, O.: State of the art of applied fast pyrolysis of lignocellulosic material — a review. Bioresource Technol. 68 (1999), S. 71–77

    Article  Google Scholar 

  80. Meier, D.; Jakobi, L.; Faix, O.: Catalytic hydroliquefaction of spruce wood — elemental balance and effect of catalyst. J. Wood Sci. Technol. 8 (1988), S. 523–542

    Article  Google Scholar 

  81. Meier, D.; Berns, J.; Faix, O.: High liquid yields from lignin via catalytic hydro-pyrolysis. In: Bridgwater, A.V. (Eds.): Adv. Thermochem. Biomass Convers.; Blackie, 1994, S. 1016–1031

    Google Scholar 

  82. Meier, D.; Faix, O.: Umwandlung lignocellulosischer Roh-und Reststoffe in flüssige Produkte durch thermische Druckbehandlung. In: Forschungsdokumentation: Produktions-und Verwendungsalternativen für die Land-und Forstwirtschaft, Nachwachsende Rohstoffe (Eds. Bundesamt für Ernährung und Forstwirtschaft), Landwirtschaftsverlag, Münster-Hiltrup, 1991, S. 140–148

    Google Scholar 

  83. Meier, D.; Berns, B.; Faix, O.: Pyrolysis and hydropyrolysis of biomass and lignins — activities at the institute of wood chemistry in Hamburg, Germany. In: Preprints of papers, 209`h ACS Meeting, Anaheim, 1995, S. 298–303

    Google Scholar 

  84. Milne, T.A.; Overend, R.P.; Fast pyrolysis: processes, technologies and products. Biomass and Bioenergy 7 (1994), S. 1–6

    Article  Google Scholar 

  85. Moffatt, J.M.; Overend, R.P.: Direct liquefaction of wood through solvolysis and catalytic hydrodeoxygenation: an engineering assessment. Biomass and Bioenergy 7 (1985), S. 99–123

    Google Scholar 

  86. Mühlen, H.J.; Schmid, C.: Versuchsanlage zur gestuften Reformierung biogener Reststoffe für eine regenerative Wasserstoffproduktion — Projekt Herten. Fachtagung “Holzvergasung — Teil der Strategie zur CO2-Minderung”, Elsterwerda, April 2000, S. 23–27

    Google Scholar 

  87. Mukunda, H.S.; Dasappa, S.; Paul, P.J.; Rajan, N.K.S; Shrinivasa, U.; Sridhar, H.V.; Sridhar, H.V.: Fixed Bed Gasification for Electricity Generation. In: Kaltschmitt, M.; Bridgwater, A.V. (Eds.): Biomass Gasification and Pyrolysis — State of the art and future prospects; CPL Press, Newbury, 1997, S. 105–116

    Google Scholar 

  88. Mukunda, H.S. (Eds.): Biomass User Network. Indian Institute of Science, Vol. 3.2, Oktober 1999

    Google Scholar 

  89. ] Naber, J.E.; Goudriaan, F.; van der Wal, S.; Zeevalkink, J.A.; van de Beld, B.: The HTU® process for biomass liquefaction: RandD strategy and potential business development. In: Overend, R.P.; Chornet, E. (Eds.): Biomass - A growth opportunity in green energy and value-added products, Proceedings of the 4th Biomass Conference of the Americas; Pergamon Elsevier, Oxford, 1999, S. 789795

    Google Scholar 

  90. Naccarati, R.; de Lange, H.J.: The Use of Biomass-derived Fuel in a Gas Turbine for the Energy Farm Project. In: Sipilä, K.; Korhonen, M. (Eds.): Power Production from Biomass III. Gasification and Pyrolysis RandDandD for Industry; VTT Syposium 192, Espoo, 1999, S. 119–139

    Google Scholar 

  91. Nieminen, J.; Palonen, J.; Kivelä, M.: Zirkulierende Wirbelschichtanlage für Biomassevergasung. VGB Kraftwerkstechnik 79 (1999), 10, S. 130–135

    Google Scholar 

  92. Nieminen, J.: Biomass CFB Gasifier Connected to a 350 MWth Steam Boiler Fired with Coal and Natural Gas — THERMIE Demonstration Project in Lathi, Finland. In: Kaltschmitt, M.; Bridgwater, A.V. (Eds.): Biomass Gasification and Pyrolysis — State of the art and future prospects; CPL Press, Newbury, 1997, S. 181–194

    Google Scholar 

  93. Nimz, H.: Beech lignin-proposal of a constitutional lignin. Angew. Chem. Internat. Edit. 13 (1974), S. 313–321

    Article  Google Scholar 

  94. Oasmaa, A.; Czernik, S.: Fuel oil quality of biomass pyrolysis oils. In: Overend, R.P.; Chornet, E. (Eds.): Biomass–A growth opportunity in green energy and value-added products, Proceedings of the 4th Biomass Conference of the Americas, Pergamon Elsevier, Oxford, 1999, S. 1247–1252

    Google Scholar 

  95. Olivares, A.; Aznar, P.M.; Caballero, M.A.; Gil. J.; Frances, E.; Corella, J.: Biomass Gasification: Produced Gas Upgrading by In-Bed Use of Dolomite. Ind. Eng. Chem. Res. 36 (1997), S. 5220–5226

    Article  Google Scholar 

  96. Ormrod Diesels, Skelmersdale, Lancashire, UK, 1999

    Google Scholar 

  97. Oshima, M.; Kashima, K.; Kubo, T.; Tabata, H.; Watanabe, H.: Studies of the hydrocracking of lignin II. The components of lignin hydrocracking products. Bull. Chem. Soc. Jpn 39 (1966) S. 2755–2759

    Article  Google Scholar 

  98. Osse, L.: Carvao Caivoijamiento. Brazil Florestal, Minist. Agric. I.B.D.F. 2 (7), S. 32–80, 1971

    Google Scholar 

  99. Overend, R.P.; Milne, T.A.; Mudge, L.K. (Eds.): Fundamentals of Thermo-chemical Biomass Conversion. Elsevier Appl. Sci., London, 1985

    Google Scholar 

  100. ] Panagiotis, N.: Binders for the wood industry made with pyrolysis oil; PyNe Newsletter 6(1998), Aston University, Birmingham

    Google Scholar 

  101. Parkhurst, H.J.; Huibers, D.T.A.; Jones, M.W.: Production of phenol from lignin. ACS Symp. Ser. Altern. (Feedst. Petrochem. Div. Petroleum Chem.) 25 (1980), S. 24–29

    Google Scholar 

  102. Peacocke, G.V.C.; Bridgwater, A.V.: Ablative fast pyrolysis of biomass for liquids: results and analysis. In: Bridgwater, A.V.; Hogan, E. (Eds.): Bio-Oil Production and Utilization; CPL Press, Newbury, 1996, S. 35–48

    Google Scholar 

  103. Perez, P.; Aznar, P.M.; Caballero, M.A.; Gil, J.; Martin, J.A.; Corella, J.: Hot Gas Cleaning and Upgrading with a Calcined Dolomite Located Downstream a Biomass Fluidized Bed Gasifier Operating with Steam-Oxygen Mixtures. Energy and Fuels 11 (1997), 6, S. 1194–1203

    Article  Google Scholar 

  104. Piskorz, J; Radlein, D.S.A.G.; Scott, D.S.; Czernik, S.: Pretreatment of wood and cellulose for production of sugars by fast pyrolysis. J. Anal. Appl. Pyrolysis 16 (1989), S. 127–142

    Article  Google Scholar 

  105. Piskorz, J.; Majerski, P.; Scott, D.S.: Liquid fuels from Canadian peat by the Waterloo Fast Pyrolysis process. Can. J. Chem. Eng. 68 (1990), S. 465–472

    Article  Google Scholar 

  106. Prins, W.; Wagenaar, B.M.: Review of the rotating cone technology for flash pyrolysis of biomass. In: Kaltschmitt, M.; Bridgwater, A.V. (Eds.): Biomass Gasification and Pyrolysis — State of the art and future prospects; CPL Press, Newbury, 1997, S. 316–326

    Google Scholar 

  107. Radlein, D.; Piskorz, J.; Scott, D.S.: Fast pyrolysis of natural polysaccharides as a potential industrial process. J. Anal. Appl. Pyrolysis, 19 (1991), S. 41–63

    Article  Google Scholar 

  108. ] Rensfelt, E.K.W.: Athmospheric CFB Gasification — The Greve Plant and beyond. In: Kaltschmitt, M.; Bridgwater, A.V. (Eds.): Biomass Gasification and Pyrolysis — State of the art and future prospects; CPL Press, Newbury, 1997, S. 139159

    Google Scholar 

  109. Richards, G.N.: Glycolaldehyde from pyrolysis of cellulose; J. Anal. Appl. Pyrolysis 10 (1988), S. 251–255

    Article  Google Scholar 

  110. Rösch, C.; Kaltschmitt, M.: Energetische Nutzung von Biomasse in Brennstoffzellen — Grundlagen und Systeme. FNR-Fachgespräch, Güstrow, 1998, Tagungsband

    Google Scholar 

  111. Rösch, C.; Wintzer, D.: Vergasung und Pyrolyse von Biomasse. TAB-Arbeitsbericht Nr. 49; Büros für Technikfolgenabschätzung beim Deutschen Bundestag (TAB ), Berlin, 1997

    Google Scholar 

  112. Rösch, C.: Verfahren zur energetischen Nutzung von Biomasse mit Brennstoffzellen — Grundlagen und Systeme. In: Fachagentur Nachwachsende Rohstoffe e.V. (Eds.): Energetische Nutzung von Biomasse mit Brennstoffzellenverfahren. Gülzower Fachgespräche, Gülzow, S. 7–33

    Google Scholar 

  113. Rösch, C.; Kaltschmitt, M.: Vergleich von Systemen zur Stromerzeugung mit integrierter Biomassevergasung. DGMK-Fachbereichstagung “Energetische und stoffliche Nutzung von Abfällen und nachwachsenden Rohstoffen”. DGMK Tagungsbericht 9802; DGMK, Hamburg, 1998, S. 209–216

    Google Scholar 

  114. Roy, C.; Morin, D.; Dubé, F.: The biomass pyrocycling process. In: Kaltschmitt, M.; Bridgwater, A.V. (Eds.): Biomass Gasification and Pyrolysis — State of the art and future prospects; CPL Press, Newbury, 1997, S. 307–315

    Google Scholar 

  115. Roy, C.: The Pyrocycling process: new developments. In: Overend, R.P.; Chor-net, E. (Eds.): Biomass - A growth opportunity in green energy and value-added products, Proceedings of the 4th Biomass Conference of the Americas; Pergamon Elsevier, Oxford, 1999, S. 1227

    Google Scholar 

  116. Roy, C.; Calvé, L.; Lu, X.; Pakdel, H.; Amen-Chen, C.: Wood composite adhesives from softwood bark-derived vacuum pyrolysis oils. In: Overend, R.P.; Chornet, E. (Eds.): Biomass–A growth opportunity in green energy and value-added products, Proceedings of the 41h Biomass Conference of the Americas; Pergamon Elsevier, Oxford, 1999, S. 521–526

    Google Scholar 

  117. Salo, K.; Patel, J.G.: Integrated Gasification Combined Cycle Based on Pressurized Fluidized Bed Gasification. In: Bridgwater, A.V.; Boocock, D.G.B. (Eds.): Developments in Thermochemical Biomass Conversion; Blackie Academic and Professional, London, 1997, S. 994–1005

    Google Scholar 

  118. Salo, K.; Patel, J.G.: Minesota Agri-Power Project (MAP). In: Sipilä, K.; Korhonen, M. (Eds.): Power Production from Biomass III. Gasification and Pyrolysis RandDandD for Industry; VTT Syposium 192, Espoo, 1999, S. 141–150

    Google Scholar 

  119. Samolada, M.C; Vasalos, I.A.: Catalytic cracking of biomass flash pyrolysis liquids. In: Bridgwater A.V.; Boocock, D.G.B (Eds.): Developments in Thermo-chemical Biomass Conversion; Chapman and Hall, London, 1997, S. 657–671

    Google Scholar 

  120. Sankol, B.: Energie aus Landwirtschaft — Stand und Potentiale; Fachtagung “Holzvergasung — Teil der Strategie zur CO2-Minderung”. Elsterwerda, April 2000, S. 18–22

    Google Scholar 

  121. ] Schilling, H.-D.; Bonn, B.; Krauss, U.: Rohstoffwirtschaft International. Band 4 “Kohlevergasung”, Glückauf, Essen, 1979, 2. Auflage

    Google Scholar 

  122. Schingnitz, N.: Noell-Vergasungstechnologien zur Verwertung von Brenn-, Rest-und Abfallstoffen. Tagungsunterlagen BAT der Pyrolyse und Vergasung von Abfällen — Altholz, Verfahrenskombinationen in Erprobung und Großtechnik, VDI-Bildungswerk, Freiberg, März 2000

    Google Scholar 

  123. Schulze, O.: Statusbericht über die Erprobung der 1 MWth-Carbo-V-Anlage mit Holzhackschnitzeln, geschreddertem Altholz und Kohle. Fachtagung “Holzvergasung — Teil der Strategie zur CO2-Minderung”, Elsterwerda, April 2000, S. 8–17

    Google Scholar 

  124. ] Schulze-Lammers, P.: Kenngrößen der thermischen Gegenstromvergasung von Weizenstroh und ausgewählten Holzbrennstoffen. Dissertation am Institut für Landtechnik, Freising-Weihenstephan, Forschungsbericht Agrartechnik 98 der Max-Eyth-Gesellschaft (MEG), 1984, 183 S.

    Google Scholar 

  125. Schulze-Lammers, P.; Luchs, M.: Vergasung von Biomasse und Nutzung des Gases zum Antrieb von Motoren. BMFT-Forschungsbericht (BMFT-FB-T 85066), Bonn, Juli 1985

    Google Scholar 

  126. Scott, D.S.; Piskorz, J.: The flash pyrolysis of Aspen-polar wood. Can. J. Chem. Eng. 60 (1982), S. 666–674

    Article  Google Scholar 

  127. Senger, W.; Schöppe G.; Erich, E.: Stand der Vergasungstechnik für die Nutzung von Biobrennstoffen am Beispiel Holz. Holz als Roh-und Werkstoff, Nr. 6, 1997

    Google Scholar 

  128. Shaddix, C.R.; Huey, S.P.: Combustion characteristics of fast pyrolysis oils derived from hybrid poplar. In: Bridgwater, A.V.; Boocock, D.G.B. (Eds.): Developments in Thermochemical Biomass Conversion; Blackie Academic, London, 1997, S. 465–480

    Google Scholar 

  129. Shafizadeh, F.: Introduction to pyrolysis of biomass; J. Anal. Appl. Pyrolysis, 3 (1982), S. 283–305

    Article  Google Scholar 

  130. Shafizadeh, F.: Chemistry of pyrolysis and combustion of wood. In: Sarkanen, K.V.; Tillman, D.A.; Jahn, E.C. (Eds.): Progress in Biomass Conversion; Academic press, New York, 1982, S. 51–76

    Google Scholar 

  131. Shihadeh, A.; Lewis, P.; Manurung, R.; Beér, J.: Combustion characterization of wood-derived flash pyrolysis oils in industrial-scale turbulent diffusion flames. In: Biomass Pyrolysis Oil Properties and Combustion Meeting; Estes Park, USA, 1994, S. 281–295

    Google Scholar 

  132. ] Simell, P.; Kurkela, E.; Stahlberg, P.; Hepola, J.: Catalytic Hot Gas Cleaning of Gasification Gas. Catalysis Today

    Google Scholar 

  133. Simell, P.; Stahlberg, P.; Solantausta, Y.; Hepola, J.; Kurkela, E.: Gasification Gas Cleaning with Nickel Monolith Catalyst. In: Bridgwater, A.V.; Boocock, D.G.B. (Eds.): Developments in Thermochemical Biomass Conversion; Blackie Academic and Professional, London, 1997, S. 1103–1116

    Google Scholar 

  134. Sharan, H.N.; Mukunda, H.S.; Shrinivasa, U.; Dasappa, S.; Paul, P.J.; Rajan, N.K.S.: IISc-DASAG biomass gasifiers: Development, technology, experience and economics. In: Bridgwater, A.V.; Boocock, D.B.B. (Eds.): Developments in Thermochemical Biomass Conversion; Blackie Academic and Professional, London, 1997, S. 1058–1072

    Google Scholar 

  135. Spindler, H.; Bauermeister, U.: Fortschritte bei der Festbettvergasungstechnik für Holz — Konzeption einer Demonstrationsanlage für 500 kWei. Fachtagung “Holzvergasung — Teil der Strategie zur CO2-Minderung”, Elsterwerda, April 2000, S. 44–48

    Google Scholar 

  136. Stahl, K.; Norgaard, M.; Nilsson, P.-A.: Pressurised CFB-gasification — The Värnamo Plant. In: Kaltschmitt, M.; Bridgwater, A.V. (Eds.): Biomass Gasification and Pyrolysis — State of the art and future prospects; CPL Press, Newbury, 1997

    Google Scholar 

  137. Stahl, K.; Norgaard, M.: Experiences from the Värnamo IGCC Demonstration Plant. In: Sipilä, K.; Korhonen, M. (Eds.): Power Production from Biomass III. Gasification and Pyrolysis RandDandD for Industry; VTT Syposium 192, Espoo, 1999, S. 73–86

    Google Scholar 

  138. State of Small-scale Biomass Gasification Technology. Report Nr. 9622, Novem, Utrecht, 1996

    Google Scholar 

  139. Strehler, A. u. a.: Weiterentwicklung und praktischer Einsatz von Anlagen zur Energiegewinnung aus Holz und Stroh im landwirtschaftlichen Bereich. BMFTForschungsbericht, Bonn, 1982

    Google Scholar 

  140. Thambimuthu, K.V.: Gas Cleaning for Advanced Coal-based Power Generation. lEA Coal Research, London, 1993

    Google Scholar 

  141. Turn, S.Q.; Kinoshita, C.M.; Ishimura, D.M.; Zhou, J.: The Fate of Inorganic Constituents of Biomass in Fluidized Bed Gasification. Fuel 777 (1998), 3, S. 135–146

    Article  Google Scholar 

  142. Van de Bled, L.; Wagenaar, B.M.; Prins, W.: Cleaning of Hot Producer Gas in a Catalyctic Adiabatic Packed Bed Reactor with Periodic Flow Reversal. Bridgwater, A.V.; Boocock, D.G.B. (Eds.): Developments in Thermochemical Biomass Conversion; Blackie Academic and Professional, London, 1997, S. 907–920

    Google Scholar 

  143. Vorher, W.: Entwicklung eines kontinuierlichen Pyrolyseverfahrens zum Abbau von Phenollignin mit dem Ziel der Ligninverwertung unter besonderer Berücksichtigung der Rückgewinnung von Phenol aus Ablaugen eines Phenolzellstoffprozesses. Dissertation, Universität Hamburg, 1976

    Google Scholar 

  144. Wagenaar, B.M.; Kuipers, J.A.M.; Prins, W.; van Swaaij, W.P.M.: The rotating cone flash pyrolysis reactor. In: Bridgwater; A.V. (Eds.): Adv. Thermochem. Biomass Convers.; Blackie,, 1994, S. 1122–1133

    Google Scholar 

  145. Weiss, H.J.; Hamilton, C.J.: LR Gasification of Dried Sewage Sludge; 4th Annual Update on The Latest Developments and Trends in the Treatment and Disposal of Sewage Sludge. The Scientific Societics Lecture Theatre, London, Oktober 1997

    Google Scholar 

  146. Wehlte, S.; Meier, D.; Moltran, J.; Faix, O.: The impact of wood preservatives on the flash pyrolysis of biomass.ln: Bridgwater, A.V.; Boocock, D.G.B. (Eds.): Developments in Thermochemical Biomass Conversion; Blackie Academic and Professional, London, 1997, S. 206–219

    Google Scholar 

  147. Wickboldt, P.; Strenziok, R.; Hansen, U.: Investigation of flame characteristics and emissions of pyrolysis oil in a modified flame tunnel. In: Overend, R.P.; Chornet, E. (Eds.): Biomass–A growth opportunity in green energy and value-added products, Proceedings of the 4th Biomass Conference of the Americas; Pergamon Elsevier, Oxford, 1999, S. 1241–1246

    Google Scholar 

  148. Witczak, Z.J. (Eds.): Levoglucosenone and livoglucosans — Chemistry and Applications. ATL Press, Mount Prospect, 1994

    Google Scholar 

  149. Wornat, M.J.; Porter, B.G.; Yang, N.Y.C.: Single droplet combustion of biomass pyrolysis oils. In: Biomass Pyrolysis Oil Properties and Combustion Meeting; Estes Park, USA, 1994, S. 257–269

    Google Scholar 

  150. www.fao.org; FAO, Rome, 2000

    Google Scholar 

  151. Zevenhoven, C.A.P.: Particle Charging and Granular Bed Filtration for High Temperature Application. Delft University Press, Delft, 1992

    Google Scholar 

  152. Zhou, J.; Oehr, K.; Simons, G.; Barrass, G.; Put, B.: Simultaneous NO,[SOX control using biolimeTM. In: Kaltschmitt, M.; Bridgwater, A.V. (Eds.): Biomass Gasification and Pyrolysis — State of the art and future prospects; CPL Press, Newbury, 1997, S. 490–494

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaltschmitt, M., Hartmann, H. (2001). Thermochemische Umwandlung. In: Kaltschmitt, M., Hartmann, H. (eds) Energie aus Biomasse. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07025-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07025-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07026-0

  • Online ISBN: 978-3-662-07025-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics