Resonance Fluorescence

  • Pierre Meystre
  • Murray SargentIII

Abstract

Sections 13-3 and 14-4 analyze spontaneous emission from an atom interacting with the vacuum electromagnetic field. The present chapter studies the spontaneous emission of an atom irradiated by a continuous, monochromatic field. This emission is called resonance fluorescence. We compute its spectrum, which is given in steady state by the Fourier transform of the first-order correlation function of the field. We also discuss the phenomenon of photon antibunching, a purely quantum-mechanical effect described by the intensity correlation function of the emitted light. This chapter is an application of the general methods of Chap. 14 and illustrates the use of the quantum regression theorem in a central problem of quantum optics. It also establishes the connection between resonance fluorescence and the semiclassical probe absorption studies of Chap. 8, and lays the foundations for studying the generation of squeezed states by resonance fluorescence and four-wave mixing in Chap. 18.

Keywords

Fluores Reso Bleach Mandel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aspect, A., G. Roger, S. Reynaud, J. Dalibard and C. Cohen-Tannoudji (1980), Phys. Rev. Lett. 45, 617.ADSCrossRefGoogle Scholar
  2. Carmichael, H. J. and D. F. Walls (1976), J. Phys. B9, 1199 gives the first prediction of photon antibunching in resonance fluorescence.Google Scholar
  3. Cresser, J. D., J. Hager, G. Leuchs, M. Rateike, and H. Walther, Chap.3 in Dissipative Systems in Quantum Optics,Ed. by R. Bonifacio, Springer-Verlag, Berlin (1982) is a good review of resonance fluorescence including both experimental details and an outline of theoretical approaches.Google Scholar
  4. Cohen-Tannoudji, C. (1977), in Frontiers in Laser Spectroscopy, Ed. by R. Balian, S. Haroche, and S. Liberman North-Holland, Amsterdam, Vol. I gives a theory of resonance fluorescence based on the Langevin-Bloch equations and stressing the dressed-atom interpretation.Google Scholar
  5. Cohen-Tannoudji, C., J. Dupont-Roc, and G. Grynberg (1988), Processus d’interaction entre photons et atomes, InterEditions et Editions du CNRS, Paris discusses the Langevin-Bloch equations and the dressed atom picture in great detail.Google Scholar
  6. Eberly, J. H. and Wodkiewicz (1977), J. Opt. Soc. Am. 67, 1252 discuss definitions of the “physical spectrum”.ADSCrossRefGoogle Scholar
  7. Holm, D. A., M. Sargent III, and S. Stenholm (1987), J. Opt. Soc. Am. B2: 1456.Google Scholar
  8. Hartig, W., W. Rasmussen, R. Schieder, and H. Walther (1976), Z. Phys. A278, 205.ADSGoogle Scholar
  9. Kimble, H. J., M. Dagenais, and L. Mandel (1978), Phys. Rev. A18, 201 made the first antibunching measurements.Google Scholar
  10. Knight, P. amd P. W. Milonni (1980), Phys. Rep. 66C, 21.MathSciNetADSCrossRefGoogle Scholar
  11. Louisell, W. H. (1973), Quantum Statistical Properties of Radiation, Wiley, New York. The Wiener-Khintchine theorem is discussed in Appendix I.Google Scholar
  12. Mollow, B. R. (1969), Phys. Rev. 188, 1969. For an overview of resonance fluorescence with many references, see B. R. Mollow (1981), in Progress in Optics XIX, Ed. by E. Wolf, North-Holland, p. 1.Google Scholar
  13. Sargent, M. III, M. O. Scully, and W. E. Lamb, Jr. (1977), Laser Physics,Addison-Wesley Publishing Co., Reading, MA. See Chap. 18 for twolevel-atom model of a detector.Google Scholar
  14. Shuda, F., C. R. Stroud, and M. Hercher (1974), J. Phys. B7, L198.ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Pierre Meystre
    • 1
  • Murray SargentIII
    • 1
  1. 1.Optical Sciences CenterUniversity of ArizonaTucsonUSA

Personalised recommendations