Complexity of First-Order Logic

  • Leonid Libkin
Part of the Texts in Theoretical Computer Science book series (TTCS)

Abstract

The goal of this chapter is to study the complexity of queries expressible in FO. We start with the general definition of different ways of measuring the complexity of a logic over finite structures: these are data, expression, and combined complexity. We then connect FO with Boolean circuits and establish some bounds on the data complexity. We also consider the issue of uniformity for a circuit model, and study it via logical definability. We then move to the combined complexity of FO, and show that it is much higher than the data complexity. Finally, we investigate an important subclass of FO queries — conjunctive queries — which play a central role in database theory.

Keywords

Corn Eter Verse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographic Notes

  1. 244.
    M.Y. Vardi. The complexity of relational query languages. In Proc. ACM Symap. on Theory of Computing, 1982, 137–146.Google Scholar
  2. 3.
    S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases, Addison-Wesley, 1995.Google Scholar
  3. 133.
    N. Immerman. Descriptive Complexity. Springer-Verlag, 1998.Google Scholar
  4. 134.
    N. Immerman and Ph. Kolaitis, eds. Descriptive Complexity and Finite Models, Proc. of a DIMACS workshop. AMS, 1997.Google Scholar
  5. 247.
    H. Vollmer. Introduction to Circuit Complexity. Springer-Verlag, 1999.Google Scholar
  6. 245.
    M.Y. Vardi. On the complexity of bounded-variable queries. In ACM Symp. on Principles of Database Systems ACM Press, 105, pages 266–276.Google Scholar
  7. 86.
    M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy. Mathematical Systems Theory, 17 (1984), 13–27.MathSciNetMATHCrossRefGoogle Scholar
  8. 10.
    M. Ajtai. Zi formulae on finite structures. Annals of Pure and Applied Logic, 24 (1983), 1–48.MathSciNetMATHCrossRefGoogle Scholar
  9. 55.
    L. Denenberg, Y. Gurevich, and S. Shelah. Definability by constant-depth polynomial-size circuits. Information and Control, 70 (1986), 216–240.MathSciNetMATHCrossRefGoogle Scholar
  10. 247.
    H. Vollmer. Introduction to Circuit Complexity. Springer-Verlag, 1999.Google Scholar
  11. 248.
    A.J. Wilkie. Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function. Journal of the American Mathematical Society, 9 (1996), 1051–1094.MathSciNetMATHCrossRefGoogle Scholar
  12. 29.
    S. R. Buss. First-order proof theory of arithmetic. In Handbook of Proof Theory, Elsevier, Amsterdam, 1998, pages 79–147.CrossRefGoogle Scholar
  13. 40.
    S.A. Cook. Proof complexity and bounded arithmetic. Manuscript, Univ. of Toronto, 2002.Google Scholar
  14. 222.
    L. Stockmeyer. The complexity of decision problems in automata and logic. PhD Thesis, MIT, 1974.Google Scholar
  15. 250.
    M. Yannakakis. Perspectives on database theory. In IEEE Symp. on Foundations of Computer Science, 1995, pages 224–246.Google Scholar
  16. 196.
    C. Papadimitriou and M. Yannakakis. On the complexity of database queries. Journal of Computer and System Sciences, 58 (1999), 407–427.MathSciNetMATHCrossRefGoogle Scholar
  17. 58.
    R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag, 1999.Google Scholar
  18. 109.
    M. Grohe. The parameterized complexity of database queries. In ACM Symp. on Principles of Database Systems,2001, ACM Press, pages 82–92.Google Scholar
  19. 111.
    M. Grohe. Parameterized complexity for the database theorist. SIGMOD Record, 31 (2002), 86–96.CrossRefGoogle Scholar
  20. 219.
    D. Seese. Linear time computable problems and first-order descriptions. Mathematical Structures in Computer Science, 6 (1996), 505 526.MathSciNetGoogle Scholar
  21. 81.
    J. Flum and M. Grohe. Fixed-parameter tractability, definability, and model-checking. SIAM Journal on Computing 31 (2001), 113–145.MathSciNetMATHCrossRefGoogle Scholar
  22. 34.
    A. Chandra and P. Merlin. Optimal implementation of conjunctive queries in relational data bases. In ACM Symp. on Theory of Computing, 1977, pages 77–90.Google Scholar
  23. 249.
    M. Yannakakis. Algorithms for acyclic database schemes. In Proc. Conf. on Very Large Databases, 1981, pages 82–94.Google Scholar
  24. 80.
    J. Flum, M. Frick, and M. Grohe. Query evaluation via tree-decompositions. Journal of the ACM, 49 (2002), 716–752.MathSciNetCrossRefGoogle Scholar
  25. 228.
    R. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hyper-graphs. SIAM Journal on Computing, 13 (1984), 566–579.MathSciNetMATHCrossRefGoogle Scholar
  26. 114.
    M. Grohe, T. Schwentick, and L. Segoufin. When is the evaluation of conjunctive queries tractable? In ACM Symp. ore Theory of Computing, 2001, pages 657–666.Google Scholar
  27. 96.
    G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive queries. Journal of the ACM, 48 (2001), 431–498.MathSciNetCrossRefGoogle Scholar
  28. 50.
    A. Dawar, K. Doets, S. Lindell, and S. Weinstein. Elementary properties of finite ranks. Mathematical Logic Quarterly, 44 (1998), 349–353.MathSciNetMATHCrossRefGoogle Scholar
  29. 247.
    H. Vollmer. Introduction to Circuit Complexity. Springer-Verlag, 1999.Google Scholar
  30. 196.
    C. Papadimitriou and M. Yannakakis. On the complexity of database queries. Journal of Computer and System Sciences, 58 (1999), 407–427.MathSciNetMATHCrossRefGoogle Scholar
  31. 81.
    J. Flum and M. Grohe. Fixed-parameter tractability, definability, and model-checking. SIAM Journal on Computing 31 (2001), 113–145.MathSciNetMATHCrossRefGoogle Scholar
  32. 96.
    G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive queries. Journal of the ACM, 48 (2001), 431–498.MathSciNetCrossRefGoogle Scholar
  33. 34.
    A. Chandra and P. Merlin. Optimal implementation of conjunctive queries in relational data bases. In ACM Symp. on Theory of Computing, 1977, pages 77–90.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Leonid Libkin
    • 1
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada

Personalised recommendations