Embedded Finite Models

  • Leonid Libkin
Part of the Texts in Theoretical Computer Science book series (TTCS)

Abstract

In finite model theory, we deal with logics over finite structures. In embedded finite model theory, we deal with logics over finite structures embedded into infinite ones.

Keywords

Beach Hull Prefix Cond Omic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographic Notes

  1. 142.
    P. Kanellakis, G. Kuper, and P. Revesz. Constraint query languages. Journal of Computer and System Sciences, 51 (1995), 26 52.MathSciNetGoogle Scholar
  2. 158.
    G. Kuper, L. Libkin, and J. Paredaens, eds. Constraint Databases. Springer-Verlag, 2000.Google Scholar
  3. 168.
    L. Libkin. Embedded finite models and constraint databases. In [99].Google Scholar
  4. 242.
    J. Van den Bussche. Constraint databases: a tutorial introduction. SIGMOD Record, 29 (2000), 44–51.CrossRefGoogle Scholar
  5. 115.
    S. Grumbach and J. Su. Queries with arithmetical constraints. Theoretical Computer Science, 173 (1997), 151–181.MathSciNetMATHCrossRefGoogle Scholar
  6. 197.
    J. Paredaens, J. Van den Bussche, and D. Van Gucht. First-order queries on finite structures over the reals. SIAM Journal on Computing, 27 (1998), 1747–1763.MathSciNetMATHCrossRefGoogle Scholar
  7. 19.
    M. Benedikt and L. Libkin. Relational queries over interpreted structures. Journal of the ACM, 47 (2000), 644–680.MathSciNetCrossRefGoogle Scholar
  8. 243.
    L. van den Dries. Tame Topology and O-Minimal Structures. Cambridge University Press, 1998.Google Scholar
  9. 193.
    M. Otto and J. Van den Bussche. First-order queries on databases embedded in an infinite structure. Information Processing Letters, 60 (1996), 37–41.MathSciNetMATHCrossRefGoogle Scholar
  10. 103.
    R.L. Graham, B.L. Rothschild and J.H. Spencer. Ramsey Theory. John Wiley & Sons, 1990.Google Scholar
  11. 115.
    S. Grumbach and J. Su. Queries with arithmetical constraints. Theoretical Computer Science, 173 (1997), 151–181.MathSciNetMATHCrossRefGoogle Scholar
  12. 157.
    B. Kuijpers, J. Paredaens, and J. Van den Bussche. Topological elementary equivalence of closed semi-algebraic sets in the real plane. Journal of Symbolic Logic, 65 (2000), 1530–1555.MathSciNetMATHCrossRefGoogle Scholar
  13. 36.
    O. Chapuis and P. Koiran. Definability of geometric properties in algebraically closed fields. Mathematical Logic Quarterly, 45 (1999), 533–550.MathSciNetMATHCrossRefGoogle Scholar
  14. 83.
    H. Fournier. Quantifier rank for parity of embedded finite models. Theoretical Computer Science, 295 (2003), 153–169.MathSciNetMATHCrossRefGoogle Scholar
  15. 229.
    A. Tarski. A Decision Method for Elementary Algebra and Geometry. Univ. of California Press, 1951. Reprinted in Quantifier Elimination and Cylindrical Algebraic Decomposition, B. Caviness and J. Johnson, eds. Springer-Verlag, 1998, pages 24–84.Google Scholar
  16. 206.
    J. Robinson. Definability and decision problems in arithmetic. Journal of Symbolic Logic, 14 (1949), 98–114.MathSciNetMATHCrossRefGoogle Scholar
  17. 15.
    D.A.M. Barrington, N. Immerman, C. Lautemann, N. Schweikardt, and D. Thérien. The Crane Beach conjecture. In IEEE Symp. on Logic in Computer Science, 2001,pages 187–196.Google Scholar
  18. 21.
    M. Benedikt, L. Libkin, T. Schwentick, and L. Segoufin. Definable relations and first-order query languages over strings. Journal of the ACM, 50 (2003), 694–751.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Leonid Libkin
    • 1
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada

Personalised recommendations