Advertisement

Optoelektronische Bauelemente

  • Michael Reisch
Chapter
  • 590 Downloads

Zusammenfassung

Optoelektronische Bauelemente dienen der Umwandlung optischer Strahlung in elektrische Signale oder umgekehrt. Die Anwendungen derartiger Bauelemente reichen von der Energiegewinnung (Solarzellen) über optische Nachrichtenübertragung, Detektion schwacher optischer Signale, Bildwandlung, Displays bis hin zu den unterschiedlichsten Aufgaben der Meß-, Steuerungs- und Regelungstechnik.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [9.1]
    C. Gerthsen, H.O. Kneser, H. Vogel. Physik. Springer, Berlin, 16. Auflage, 1989.Google Scholar
  2. [9.2]
    L.K. Anderson, B.J. McMurtry. High speed photodetectors. Proc. IEEE, 54 (11): 1335–1349, 1966.CrossRefGoogle Scholar
  3. [9.3]
    S.M. Sze. Physics of Semiconductor Devices. J. Wiley, New York, 2nd edition, 1982.Google Scholar
  4. [9.4]
    G. Lucovsky, R.F. Schwarz, R.B. Emmons. Transit-time considerations in p-i-n diodes. J. appl. Phys., 35 (3): 622–628, 1964.CrossRefGoogle Scholar
  5. [9.5]
    EGandG Optoelectronics. Silicon avalanche photodiodes C30902E, C30902S, C30921E, C30921S data sheet.Google Scholar
  6. [9.6]
    W.P. Connors. Lateral photodetector operating in the fully reverse-biased mode. IEEE Trans. El. Dee., 18 (8): 591–596, 1971.CrossRefGoogle Scholar
  7. [9.7]
    A.K. Dutta, Y. Hatanaka. A study of the transient response of position-sensitive detectors. Sol. St. Electron., 32 (6): 485–492, 1989.CrossRefGoogle Scholar
  8. [9.8]
    F.H. de la Moneda, E. R. Chenette, A. van der Ziel. Noise in phototransistors. IEEE Trans. El. Dev., 18 (6): 340–346, 1971.CrossRefGoogle Scholar
  9. [9.9]
    H. Meixner, G. Mader. Pyroelektrische IR-Detektoren auf Polymerbasis. Physik in unserer Zeit, 21 (5): 210–218, 1990.CrossRefGoogle Scholar
  10. [9.10]
    H. Meixner, G. Mader, P. Kleinschmidt. Infrared sensors based on the pyroelectric polymer polyvinylidene fluoride (PVDF). Siemens Forschungs-und Entwicklungsberichte, 15 (3): 105–114, 1986.Google Scholar
  11. [9.11]
    P. Kleinschmidt, H. Meixner. Passiv-Infrarot-Detektor auf der Basis von Polyvinylidenfluorid. Sensor 85, 6, 1985.Google Scholar
  12. [9.12]
    W. Heywang. Sensorik. Springer, Berlin, 4. Auflage, 1992.Google Scholar
  13. [9.13]
    D.M. Chapin, C.S. Fuller, G.L. Pearson. A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys., 25: 676, 1954.CrossRefGoogle Scholar
  14. [9.14]
    I.S. Gradshteyn, I.M. Ryzhik. Table of Integrals, Series and Products. Academic Press, New York, 1980.Google Scholar
  15. [9.15]
    A. Goetzberger, B. Vo, J. Knobloch. Sonnenenergie: Photovoltaik. Teubner, Stuttgart, 1994.Google Scholar
  16. [9.16]
    Y. Arai, M. Ishii, H. Shinohara, S. Yamazaki. A single p-i-n junction amorphous-silicon solar cell with conversion efficiency of 12.65%. IEEE Electron Dev. Lett., 12 (8): 460–461, 1991.CrossRefGoogle Scholar
  17. [9.17]
    T.L. Chu, S.S. Chu, J. Britt. C. Ferekides, C. Wang, C.Q. Wu, H.S. Ullal. 14.6% efficient thin-film cadmium teulluride heterojunction solar cells. IEEE Electron Dev. Lett., 13 (5): 303–304, 1992.CrossRefGoogle Scholar
  18. [9.18]
    K.W. Mitchell, C. Eberspacher, J.H. Ermer, K.L. Pauls, D.N. Pier. CuInSe2 cells and modules. IEEE Trans. El. Dev., 37 (2): 410–417, 1990.CrossRefGoogle Scholar
  19. [9.19]
    D.K. Schroder. Carrier lifetimes in silicon. IEEE Trans. El. Dev., 44 (1): 160–170, 1997.CrossRefGoogle Scholar
  20. [9.20]
    T.S. Moss (Hrsg.). Handbook on Semiconductors, vol.4: Device Physics. North-Holland. Amsterdam, 1993.Google Scholar
  21. [9.21]
    J. Hynecek. BCMD–an improved photosite structure for high-density image sensors. IEEE Trans. El. Dev., 38 (5): 1011–1020, 1991.CrossRefGoogle Scholar
  22. [9.22]
    J.D.E Beynon, D.R. Lamb. Charge-coupled devices and their applications. McGraw-Hill, London, 1980.Google Scholar
  23. [9.23]
    J. Hynecek. Theoretical analysis and optimization of CDS signal processing method for CCD image sensors. IEEE Trans. El. Dev., 39 (11): 2497–2507, 1992.CrossRefGoogle Scholar
  24. [9.24]
    S. Manabe Error! Hyperlink reference not valid.. A 2-million-pixel CCD image sensor overlaid with an amorphous silicon photoconversion layer. IEEE Trans. El. Dev., 38 (8): 1765–1771, 1991.CrossRefGoogle Scholar
  25. [9.25]
    H. Yamashita Error! Hyperlink reference not valid.. A 2/3-in 2 million pixel stack-CCD HDTV imager. IEEE J. Sol. St. Cire., 30 (8): 881–889, 1995.CrossRefGoogle Scholar
  26. [9.26]
    Hamamatsu. Solid state emitters. Druckschrift, 1994.Google Scholar
  27. [9.27]
    K. Werner. Higher visibility for LEDs. IEEE Spectrum, (7): 30–39, 1994.Google Scholar
  28. [9.28]
    R.F. Davis. III-V nitrides for electronic and optoelectronic applications. Proc IEEE, 79 (5): 702–703, 1991.CrossRefGoogle Scholar
  29. [9.29]
    SONY. Laser diodes - Data book. Sony corp., 1992.Google Scholar
  30. [9.30]
    T.-P. Lee. Recent advances in long-wavelength semiconductor lasers for optical fiber communication. Proc. IEEE, 79 (3): 253–276, 1991.CrossRefGoogle Scholar
  31. [9.31]
    W. Harth, H. Grothe. Sende-und Empfangsdioden für die optische Nachrichtentechnik. Teubner, Stuttgart, 1984.CrossRefGoogle Scholar
  32. [9.32]
    D. Marcuse. Computer model on an injection laser amplifier. IEEE J. Quantum Electron., 19 (1): 63–73, 1983.CrossRefGoogle Scholar
  33. [9.33]
    R.S. Tucker. Circuit model of double-heterojunction laser below threshold. IEE Proc., 128 (3): 101–106, 1981.Google Scholar
  34. [9.34]
    R.S. Tucker. Large-signal circuit model for simulation of injection-laser modulation dynamics. IEE Proc., 128 (5): 180–184, 1981.Google Scholar
  35. [9.35]
    R.S. Tucker, D.J. Pope. Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser. IEEE J. Quantum Electron., 19 (7): 1179–1183, 1983.CrossRefGoogle Scholar
  36. [9.36]
    D.S. Gao. Optoelectronic integrated circuits. IEEE J. Quantum Electron.,26(7): 12061215, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Michael Reisch
    • 1
  1. 1.Fachhochschule KemptenHochschule für Technik und WirtschaftKempten/AllgäuDeutschland

Personalised recommendations