Skip to main content

Optoelektronische Bauelemente

  • Chapter
Elektronische Bauelemente
  • 853 Accesses

Zusammenfassung

Optoelektronische Bauelemente dienen der Umwandlung optischer Strahlung in elektrische Signale oder umgekehrt. Die Anwendungen derartiger Bauelemente reichen von der Energiegewinnung (Solarzellen) über optische Nachrichtenübertragung, Detektion schwacher optischer Signale, Bildwandlung, Displays bis hin zu den unterschiedlichsten Aufgaben der Meß-, Steuerungs- und Regelungstechnik.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. C. Gerthsen, H.O. Kneser, H. Vogel. Physik. Springer, Berlin, 16. Auflage, 1989.

    Google Scholar 

  2. L.K. Anderson, B.J. McMurtry. High speed photodetectors. Proc. IEEE, 54 (11): 1335–1349, 1966.

    Article  Google Scholar 

  3. S.M. Sze. Physics of Semiconductor Devices. J. Wiley, New York, 2nd edition, 1982.

    Google Scholar 

  4. G. Lucovsky, R.F. Schwarz, R.B. Emmons. Transit-time considerations in p-i-n diodes. J. appl. Phys., 35 (3): 622–628, 1964.

    Article  Google Scholar 

  5. EGandG Optoelectronics. Silicon avalanche photodiodes C30902E, C30902S, C30921E, C30921S data sheet.

    Google Scholar 

  6. W.P. Connors. Lateral photodetector operating in the fully reverse-biased mode. IEEE Trans. El. Dee., 18 (8): 591–596, 1971.

    Article  Google Scholar 

  7. A.K. Dutta, Y. Hatanaka. A study of the transient response of position-sensitive detectors. Sol. St. Electron., 32 (6): 485–492, 1989.

    Article  Google Scholar 

  8. F.H. de la Moneda, E. R. Chenette, A. van der Ziel. Noise in phototransistors. IEEE Trans. El. Dev., 18 (6): 340–346, 1971.

    Article  Google Scholar 

  9. H. Meixner, G. Mader. Pyroelektrische IR-Detektoren auf Polymerbasis. Physik in unserer Zeit, 21 (5): 210–218, 1990.

    Article  Google Scholar 

  10. H. Meixner, G. Mader, P. Kleinschmidt. Infrared sensors based on the pyroelectric polymer polyvinylidene fluoride (PVDF). Siemens Forschungs-und Entwicklungsberichte, 15 (3): 105–114, 1986.

    Google Scholar 

  11. P. Kleinschmidt, H. Meixner. Passiv-Infrarot-Detektor auf der Basis von Polyvinylidenfluorid. Sensor 85, 6, 1985.

    Google Scholar 

  12. W. Heywang. Sensorik. Springer, Berlin, 4. Auflage, 1992.

    Google Scholar 

  13. D.M. Chapin, C.S. Fuller, G.L. Pearson. A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys., 25: 676, 1954.

    Article  Google Scholar 

  14. I.S. Gradshteyn, I.M. Ryzhik. Table of Integrals, Series and Products. Academic Press, New York, 1980.

    Google Scholar 

  15. A. Goetzberger, B. Vo, J. Knobloch. Sonnenenergie: Photovoltaik. Teubner, Stuttgart, 1994.

    Google Scholar 

  16. Y. Arai, M. Ishii, H. Shinohara, S. Yamazaki. A single p-i-n junction amorphous-silicon solar cell with conversion efficiency of 12.65%. IEEE Electron Dev. Lett., 12 (8): 460–461, 1991.

    Article  Google Scholar 

  17. T.L. Chu, S.S. Chu, J. Britt. C. Ferekides, C. Wang, C.Q. Wu, H.S. Ullal. 14.6% efficient thin-film cadmium teulluride heterojunction solar cells. IEEE Electron Dev. Lett., 13 (5): 303–304, 1992.

    Article  Google Scholar 

  18. K.W. Mitchell, C. Eberspacher, J.H. Ermer, K.L. Pauls, D.N. Pier. CuInSe2 cells and modules. IEEE Trans. El. Dev., 37 (2): 410–417, 1990.

    Article  Google Scholar 

  19. D.K. Schroder. Carrier lifetimes in silicon. IEEE Trans. El. Dev., 44 (1): 160–170, 1997.

    Article  Google Scholar 

  20. T.S. Moss (Hrsg.). Handbook on Semiconductors, vol.4: Device Physics. North-Holland. Amsterdam, 1993.

    Google Scholar 

  21. J. Hynecek. BCMD–an improved photosite structure for high-density image sensors. IEEE Trans. El. Dev., 38 (5): 1011–1020, 1991.

    Article  Google Scholar 

  22. J.D.E Beynon, D.R. Lamb. Charge-coupled devices and their applications. McGraw-Hill, London, 1980.

    Google Scholar 

  23. J. Hynecek. Theoretical analysis and optimization of CDS signal processing method for CCD image sensors. IEEE Trans. El. Dev., 39 (11): 2497–2507, 1992.

    Article  Google Scholar 

  24. S. Manabe Error! Hyperlink reference not valid.. A 2-million-pixel CCD image sensor overlaid with an amorphous silicon photoconversion layer. IEEE Trans. El. Dev., 38 (8): 1765–1771, 1991.

    Article  Google Scholar 

  25. H. Yamashita Error! Hyperlink reference not valid.. A 2/3-in 2 million pixel stack-CCD HDTV imager. IEEE J. Sol. St. Cire., 30 (8): 881–889, 1995.

    Article  Google Scholar 

  26. Hamamatsu. Solid state emitters. Druckschrift, 1994.

    Google Scholar 

  27. K. Werner. Higher visibility for LEDs. IEEE Spectrum, (7): 30–39, 1994.

    Google Scholar 

  28. R.F. Davis. III-V nitrides for electronic and optoelectronic applications. Proc IEEE, 79 (5): 702–703, 1991.

    Article  Google Scholar 

  29. SONY. Laser diodes - Data book. Sony corp., 1992.

    Google Scholar 

  30. T.-P. Lee. Recent advances in long-wavelength semiconductor lasers for optical fiber communication. Proc. IEEE, 79 (3): 253–276, 1991.

    Article  Google Scholar 

  31. W. Harth, H. Grothe. Sende-und Empfangsdioden für die optische Nachrichtentechnik. Teubner, Stuttgart, 1984.

    Book  Google Scholar 

  32. D. Marcuse. Computer model on an injection laser amplifier. IEEE J. Quantum Electron., 19 (1): 63–73, 1983.

    Article  Google Scholar 

  33. R.S. Tucker. Circuit model of double-heterojunction laser below threshold. IEE Proc., 128 (3): 101–106, 1981.

    Google Scholar 

  34. R.S. Tucker. Large-signal circuit model for simulation of injection-laser modulation dynamics. IEE Proc., 128 (5): 180–184, 1981.

    Google Scholar 

  35. R.S. Tucker, D.J. Pope. Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser. IEEE J. Quantum Electron., 19 (7): 1179–1183, 1983.

    Article  Google Scholar 

  36. D.S. Gao. Optoelectronic integrated circuits. IEEE J. Quantum Electron.,26(7): 12061215, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reisch, M. (1998). Optoelektronische Bauelemente. In: Elektronische Bauelemente. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06987-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06987-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06988-2

  • Online ISBN: 978-3-662-06987-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics