Advertisement

Feldeffekttransistoren

  • Michael Reisch
Chapter
  • 603 Downloads

Zusammenfassung

Feldeffekttransistoren (FETs) sind aktive Bauelemente, bei denen der Stromfluß durch einen leitenden Kanal mit Hilfe einer Steuerelektrode moduliert werden kann. Der prinzipielle Aufbau eines FET ist in Abb. 8.0.1 dargestellt: Der zwischen den Anschlüssen Source (S) und Drain (D) fließende Strom wird durch das sog. Gate (G) gesteuert.1

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [8.1]
    Y.P. Tsividis. Operation and Modeling of the MOS Transistor. McGraw Hill, New York, 1988.Google Scholar
  2. [8.2]
    J.M. Steininger. Understanding wide-band MOS transistors. IEEE Circuits and Devices Mag., (May): 26–31, 1990.Google Scholar
  3. [8.3]
    J.R. Burns. High-frequency characteristics of the insulated-gate field-effect transistor. RCA Review, (Sept.): 385–418, 1967.Google Scholar
  4. [8.4]
    S.M. Sze. Physics of Semiconductor Devices. J. Wiley, New York, 2nd edition, 1982.Google Scholar
  5. [8.5]
    M.-W. Chiang, J. Choma, C. Kao. A simulation method to completely model the various transistor I-V operational modes of long channel depletion MOSFETs. IEEE Trans. CAD, 4 (3): 322–328, 1985.Google Scholar
  6. [8.6]
    M. J. van der Tol, S.G. Chamberlain. Potential and electron distribution model for the buried-channel MOSFET. IEEE Trans. El. Dev., 36 (4): 670–689, 1989.CrossRefGoogle Scholar
  7. [8.7]
    G. Baccarani, M.R. Wordeman, R.H. Dennard. Generalized scaling theory and its application to 1/4 micrometer MOSFET design. IEEE Trans. El. Dev.. 31 (4): 452–462, 1984.CrossRefGoogle Scholar
  8. [8.8]
    C. Hu. Future CMOS scaling and reliability. Proc. IEEE, 81 (5): 682–689, 1993.CrossRefGoogle Scholar
  9. [8.9]
    B. Davari, R.H. Dennard, G.S. Shahidi. CMOS scaling for high performance and low power–the next ten years. Proc. IEEE, 83 (4): 595–606, 1995.CrossRefGoogle Scholar
  10. [8.10]
    S.M. Sze (Ed.). High-Speed Semiconductor Devices. J. Wiley, New York, 1990.Google Scholar
  11. [8.11]
    E. Takeda, K. Ikuzaki, H. Katto, Y. Ohji, K. Hinode, A. Hamada, T. Sakuta, T. Funabiki, T. Sasaki. VLSI reliability challenges: From device physics to wafer scale integration. Proc. IEEE, 81 (5): 653–674, 1993.CrossRefGoogle Scholar
  12. [8.12]
    F.-C. Hsu, P.-K. Ko, S. Tam, C. Hu, R.S. Muller. An analytical breakdown model for short-channel MOSFETs. IEEE Trans. El. Dev., 29 (11): 1735–1740, 1982.CrossRefGoogle Scholar
  13. [8.13]
    C.G. Sodini, P.K. Ko, J.L. Moll. The effect of high fields on MOS device and circuit performance. IEEE Trans. El. Dev., 31 (10): 1386–1393, 1984.CrossRefGoogle Scholar
  14. [8.14]
    K.-Y. Toh, P.-K. Ko, R. G. Meyer. An engineering model for short channel MOSFETs. IEEE J. Sol. St. Circ., 23 (4): 950–958, 1988.CrossRefGoogle Scholar
  15. [8.15]
    P.K. Ko. Approaches to scaling. VLSI Electronics, Microstructure Science: Advanced MOS Device Physics (N.G. Einspruch and G. Gildenblat, Eds.),18: 1–37, 1989.Google Scholar
  16. [8.16]
    A. Chatterjee, C.F. Machala, P. Yang. A submicron DC MOSFET model for simulation of analog circuits. IEEE Trans. CAD, 14 (10): 1193–1206, 1995.Google Scholar
  17. [8.17]
    Z.-H. Liu, C. Hu, J.-H. Huang, T.-Y. Chan, M.-C. Jeng, P.K. Ko, Y.C. Cheng. Threshold voltage model for deep-submicrometer MOSFETs. IEEE Trans. El. Dev., 40 (1): 86–95, 1993.CrossRefGoogle Scholar
  18. [8.18]
    H.-M. Muehlhoff, D. V. McCaughan. ‘MOS transistors and memories’ in: Handbook on semiconductors, vol. 4 (T.S. Moss, ed.). Elsevier, pages 265–387, 1993.Google Scholar
  19. [8.19]
    C. Hu. IC reliability simulation. IEEE J. Sol. St. Cire., 27: 241–246, 1992.CrossRefGoogle Scholar
  20. [8.20]
    Y. Leblebici, S.-M. Kang. Modeling and simulation of hot-carrier-induced device degradation in MOS circuits. IEEE J. Sol.St. Cire., 28 (5): 585–595. 1993.CrossRefGoogle Scholar
  21. [8.21]
    J.K. Keller. Protection of MOS integrated circuits from destruction by electrostatic discharge. EOS/ESD Symp., Proc. vol. EOS-3: 73–79, 1981.Google Scholar
  22. [8.22]
    C. Duvvury, A. Amerasekera. ESD: A pervasive reliability concern for IC technologies. Proc. IEEE, 81 (5): 690–702. 1993.CrossRefGoogle Scholar
  23. [8.23]
    C. Duvvury, R.N. Rountree, L.S. White. A summary of most efective electrostatic discharge protection circuits for MOS memories and their observer failure modes. EOS/ESD Symp., Proc. vol. EOS-5: 181–184, 1983.Google Scholar
  24. [8.24]
    A.S. Grove. Physics and Technology of Semiconductor Devices. J. Wiley, New York, 1967.Google Scholar
  25. [8.25]
    A. Masaki. Possibilities of deep-submicrometer CMOS for very-high-speed computer logic. Proc. IEEE, 81 (9): 1311–1325, 1993.CrossRefGoogle Scholar
  26. [8.26]
    J. Lohstroh. Static and dynamic noise margins of logic circuits. IEEE J.Sol.St.Circ., 14 (3): 591–598, 1979.CrossRefGoogle Scholar
  27. [8.27]
    E. Seevinck, F.J. List, J. Lohstroh. Static-noise margin analysis of MOS SRAM cells. IEEE J. Sol.St. Cire., 22 (5): 748–754, 1987.CrossRefGoogle Scholar
  28. [8.28]
    R. Gregorian, K.W. Martin, G.C. Ternes. Switched-capacitor circuit design. Proc. IEEE, 71 (8): 941–966, 1983.CrossRefGoogle Scholar
  29. [8.29]
    B.J. Sheu, C. Hu. Switch-induced error voltage on a switched capacitor. IEEE J.Sol.St.Circ., 19 (4): 519–525, 1984.CrossRefGoogle Scholar
  30. [8.30]
    R.R. Troutman. Latchup in CMOS Technology. Kluwer, Boston, 1986.CrossRefGoogle Scholar
  31. [8.31]
    H. Kadota, J. Miyake, Y. Nishimiche, H. Kudoh, K Kagawa. An 8-kbit content-addressable and reentrant memory. IEEE J. Sol.-St. Cire., 20 (5): 951–957, 1985.CrossRefGoogle Scholar
  32. [8.32]
    T.C. May, M.H. Woods. Alpha-particle induced soft errors in dynamic memories. IEEE Trans. El. Dev., 26 (1): 2–9, 1979.CrossRefGoogle Scholar
  33. [8.33]
    D.S. Yaney, J.T. Nelson, L.L. Vanskike. Alpha-particle tracks in silicon and their effect on dynamic MOS RAM reliability. IEEE Trans. El. Dev., 26 (1): 10–16, 1979.CrossRefGoogle Scholar
  34. [8.34]
    G.C. Messenger. Collection of charge on junction nodes from ion tracks. IEEE Trans. Nucl. Sci., 29 (6): 2024–2031, 1982.CrossRefGoogle Scholar
  35. [8.35]
    F.B. McLean, T.R. Oldham. Charge funneling in n-and p-type Si substrates. IEEE Trans. Nucl. Sci, 29(6): 2018–2023, 1982.Google Scholar
  36. [8.36]
    C. Hu. Alpha-particle-induced field and enhanced collection of carriers. IEEE El.Dev.Lett., 3 (2): 31–34, 1982.CrossRefGoogle Scholar
  37. [8.37]
    F. Masuoka. Are you ready for next-generation dynamic RAM chips? IEEE Spectrum, (November 1990): 110–112.Google Scholar
  38. [8.38]
    N.C.C. Lu. Advanced cell structures for dynamic RAMs. IEEE Circuits and Devices Mag., (Januar 1990 ): 27–36.Google Scholar
  39. [8.39]
    W. Müller, D. Kranzer. Technologies for megabit DRAMs. A.E. Ü., 44 (3): 200–207, 1990.Google Scholar
  40. [8.40]
    K. Takeuchi, M. Aoki, Y. Watanabe, K. Itoh. Alpha-particle-induced charge collection in scaled DRAM cells with advanced structures. Sol.-St. Electron., 33 (11): 1477–1483, 1990.CrossRefGoogle Scholar
  41. [8.41]
    M. Fukuma, H. Furata, M. Takada. Memory LSI reliability. Proc. IEEE, 81 (5): 768–775, 1993.CrossRefGoogle Scholar
  42. [8.42]
    K.-D. Suh et al. A 3.3 V 32 Mb NAND flash memory with incremental step pulse programming scheme. IEEE J. Sol.-St. Cire., 30 (11): 1149–1156, 1995.CrossRefGoogle Scholar
  43. [8.43]
    Y. Iwata. A 35 ns cycle time 3.3 V only 32 Mb NAND flash EEPROM. IEEE J. Sol. St. Cire., 30 (11): 1157–1164, 1995.CrossRefGoogle Scholar
  44. [8.44]
    S. Aritome, R. Shirota, G. Hemink, T. Endoh, F. Masuoka. Reliability issues of flash memory cells. Proc. IEEE, 81 (5): 776–788, 1993.CrossRefGoogle Scholar
  45. [8.45]
    K. Shenai. Gate-resistance-limited switching frequencies of power MOSFETs. IEEE EDL, 11(11): 544–546, 1990.Google Scholar
  46. [8.46]
    B.J. Baliga. Power ICs in the saddle. IEEE Spectrum, (7): 34–48, 1995.Google Scholar
  47. [8.47]
    K. Fischer, K. Shenai. Dynamics of power MOSFET switching under unclamped inductive loading conditions. IEEE Trans. El. Dev., 43 (6): 1007–1015, 1996.CrossRefGoogle Scholar
  48. [8.48]
    MOTOROLA. Understanding SENSEFETs. Application Note AN1001, 1988.Google Scholar
  49. [8.49]
    A. R. Hefner, D.L. Blackburn. An analytical model for the steady-state and transient characteristics of the power insulated-gate bipolar transistor. Sol.-St. Electronics, 31 (10): 1513–1532, 1988.CrossRefGoogle Scholar
  50. [8.51]
    A. R. Hefner, D.M. Dieboldt. An experimentally verified IGBT model implemented in the SABER circuit simulator. IEEE Trans. Power Electron., 9(5): 532 542, 1994.Google Scholar
  51. [8.52]
    A. R. Hefner. Modeling buffer layer IGBTs for circuit simulation. IEEE Trans. Power electron., 10 (2): 111–123, 1995.MathSciNetCrossRefGoogle Scholar
  52. [8.53]
    H. Shichman, D.A. Hodges. Modeling and simulation of insulated-gate field-effect transistor switching circuits. IEEE J. Sol. St. Circ., 3 (3): 285–289, 1968.CrossRefGoogle Scholar
  53. [8.54]
    J.E. Meyer. MOS models and circuit simulation. RCA Rev., 32: 42–63, 1971.Google Scholar
  54. [8.55]
    K.K. Ng, J.R. Brews. Measuring the effective channel length of MOSFETs. IEEE Circuits and Devices Mag., pages 33–38, November 1990.Google Scholar
  55. [8.56]
    P. Antognetti, G. Massobrio. Semiconductor Device Modeling with SPICE. McGraw-Hill, New York, 1989.Google Scholar
  56. [8.57]
    L.M. Dang. A simple current model for short channel IGFET and its application to circuit simulation. IEEE J. Sol. St. Cire., 14 (2): 358–367, 1979.CrossRefGoogle Scholar
  57. [8.58]
    F.M. Klaassen. A MOS model for computer-aided design. Philips Res. Repts., 31: 71–83, 1976.Google Scholar
  58. [8.59]
    A. Vladimirescu, S. Liu. The simulation of MOS integrated circuits using SPICE2. Memorandum No. UCB/ERL M80/7, 1980.Google Scholar
  59. [8.60]
    B.J. Sheu, D.L. Scharfetter, P.-K. Ko, M.-C. Jeng. Bsim: Berkeley short-channel IGFET model for MOS transistors. IEEE J.Sol.St.Circ., 22 (4): 558–566, 1987.CrossRefGoogle Scholar
  60. [8.61]
    J.E. Meyer. MOS models and circuit simulation. RCA Rev., 32 (Mar): 42–63, 1971.Google Scholar
  61. [8.62]
    P.J.V. Vandeloo, W.M.C. Sansen. Modeling of the MOS transistor for high frequency analog design. IEEE Trans. CAD, 8(7): 713 723. 1989.Google Scholar
  62. [8.63]
    S.-Y. Oh, D.E. Ward, R.W. Dutton. Transient analysis of MOS transistors. IEEE Trans. El. Dev., 27 (8): 1571–1578, 1980.CrossRefGoogle Scholar
  63. [8.64]
    B.J. Sheu, W.-J. Hsu, P.K. Ko. A MOS transistor charge model for VLSI design. IEEE Trans. CAD, 7 (4): 520–527, 1988.Google Scholar
  64. [8.65]
    N.D. Arora, L.M Richardson. MOSFET Modeling for Circuit Simulation in VLSI Electronics Microstructure Science Vol. 18 (N.G. Einspruch, G.S. Gildenblat Eds.). Academic Press, pp. 237–276, 1989Google Scholar
  65. [8.66]
    B. Wang, J.R. Hellums, C.G. Sodini. MOSFET thermal noise modeling for analog integrated circuits. IEEE J. Sol. St. Cire., 29 (7): 833–835, 1994.CrossRefGoogle Scholar
  66. [8.67]
    A.R. Boothroyd, S.W. Tarasewicz, C. Slaby. MISNAN–a physically based continuous MOSFET model for CAD applications. IEEE Trans. CAD, 10 (12): 1512–1529, 1991.Google Scholar
  67. [8.68]
    Y. Tsividis, K. Suyama. MOSFET modeling for analog circuit CAD: Problems and prospects. IEEE J. Sol. St. Cire., 29 (3): 210–216, 1994.CrossRefGoogle Scholar
  68. [8.69]
    W. Kellner, H. Kniepkamp. GaAs-Feldeffekttransistoren (Halbleiter-Elektronik Bd. 16). Springer, Heidelberg, 1989.Google Scholar
  69. [8.70]
    D.A. Hodges, H.G. Jackson. Analysis and Design of Digital Integrated Circuits. McGraw Hill, New York, 2nd edition, 1988.Google Scholar
  70. [8.71]
    W.R. Curtice. A MESFET model for use in the design of GaAs integrated circuits. IEEE Trans. MTT, 28 (5): 448–456, 1980.CrossRefGoogle Scholar
  71. [8.72]
    H. Statz, P. Newman, I.W. Smith, R.A. Pucel, H.A. Haus. GaAs FET device and circuit simulation in SPICE. IEEE Trans. El. Dev., 34 (2): 160–169, 1987.CrossRefGoogle Scholar
  72. [8.73]
    A.J. McCamant, G.D. McCormack, D.H. Smith. An improved GaAs MESFET model for SPICE. IEEE Trans. MTT, 38 (6): 822–824, 1990.CrossRefGoogle Scholar
  73. [8.74]
    D. Delagebeaudeuf, N.T. Linh. Metal-(n) A1GaAs-GaAs two-dimensional electron gas FET. IEEE Trans. El. Dee., 29 (6): 955–960, 1982.CrossRefGoogle Scholar
  74. [8.75]
    L.D. Nguyen, L. E. Larson, U.K. Mishra. Ultra-high-speed modulation-doped field-effect transistors: a tutorial review. Proc. IEEE, 80 (4): 494–518, 1992.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Michael Reisch
    • 1
  1. 1.Fachhochschule KemptenHochschule für Technik und WirtschaftKempten/AllgäuDeutschland

Personalised recommendations