Advertisement

Bipolartransistoren

  • Michael Reisch
Chapter
  • 596 Downloads

Zusammenfassung

Der Bipolartransistor (BJT)1 wurde 1947 in den Bell Laboratorien erfunden. Diese Erfindung leitete eine Revolution in der Elektronik ein und hat mit der etwa ein Jahrzehnt später entwickelten Planartechnologie das Tor zu dem sich rasch weiterentwickelnden Gebiet der integrierten Schaltungen2 aufgestoßen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [7.1]
    S.M. Sze. Physics of Semiconductor Devices. J. Wiley, New York, 2nd edition, 1982.Google Scholar
  2. [7.2]
    H.S. Bennett. Heavy doping effects on bandgaps, effective intrinsic carrier concentrations and carrier mobilities and lifetimes. Sol.-St. Electron., 28 (1): 193–200, 1985.CrossRefGoogle Scholar
  3. [7.3]
    R.J. van Overstraeten, R.P. Mertens. Heavy doping effects in silicon. Sol.-St. Electron., 30 (11): 1077–1087, 1987.CrossRefGoogle Scholar
  4. [7.4]
    J. Wagner, J.A. del Alamo. Band-gap narrowing in heavily doped silicon: A comparison of optical and electrical data. J. Appl. Phys., 63 (2): 425–429, 1988.CrossRefGoogle Scholar
  5. [7.5]
    M.Reisch. On bistable behavior and open-base breakdown of bipolar transistors in the avalanche regime–modeling and applications. IEEE Trans. El. Dee., 39 (6): 1398–1409, 1992.CrossRefGoogle Scholar
  6. [7.6]
    J. Lohstroh, J.J.M. Koomen, A.T. van Zanten, R.H.W. Salters. Punch-through currents in p+np+ and n+pn+ sandwich structures I. Sol.-St. Electron., 24 (9): 805–814, 1981.CrossRefGoogle Scholar
  7. [7.7]
    R.M. Scarlett, W. Shockley. Secondary breakdown and hot spots in power transistors. IEEE Intern. Cony. Rec., pt.3, pages 3–13, 1963.Google Scholar
  8. [7.8]
    F. Weitzsch. Zur Theorie des zweiten Durchbruchs bei Transistoren. A.E. U., 19 (1): 27–42, 1965.Google Scholar
  9. [7.9]
    T. Schad H.M. Rein, R. Zühlke. Der Einfluß des Basisbahnwiderstandes und der Ladungsträgermultiplikation auf des Ausgangskennlinienfeld von Planartransistoren. Sol.-St. Electron., 15: 481–500, 1972.CrossRefGoogle Scholar
  10. [7.10]
    G. Barbottin G. Blasquez, V. Boisson. Instabilities in Bipolar Devices in ‘Instabilities in Silicon Devices’ (G. Barbottin and A. Vapaille ( Eds.) Elsevier, North Holland, 1989.Google Scholar
  11. [7.11]
    H. Schenk. Bipolare Transistoren. Springer, Berlin, 1978.CrossRefGoogle Scholar
  12. [7.12]
    D.A. Hodges, H.G. Jackson. Analysis and Design of Digital Integrated Circuits. McGraw Hill, New York, 2nd edition, 1988.Google Scholar
  13. [7.13]
    D.D. Tang, P.M. Solomon. Bipolar transistor design for optimized power-delay logic circuits. IEEE J. Sol.-St. Circ., 14 (4): 679–684, 1979.CrossRefGoogle Scholar
  14. [7.14]
    P.K. Tien. Propagation delay in high speed silicon bipolar and GaAs HBT digital circuits. Int. J. of High Speed Electronics, 1 (1): 101–124, 1990.CrossRefGoogle Scholar
  15. [7.15]
    G.R. Wilson. Advances in bipolar VLSI. Proc. IEEE, 78 (11): 1707–1719, 1990.CrossRefGoogle Scholar
  16. [7.16]
    R. Müller, H.-J. Pfleiderer, K.-U. Stein. Energy per logic operation in integrated circuits: Definition and determination. IEEE J. Sol. St. Cire., 11 (5): 657–661, 1976.CrossRefGoogle Scholar
  17. [7.17]
    I.E. Getreu. Modeling the Bipolar Transistor. Tektronix, Beaverton, 1976.Google Scholar
  18. [7.18]
    J.A. Kerr, F. Berz. The effect of emitter doping gradient on fT in microwave bipolar transistors. IEEE Trans. El. Dev., 22 (1): 15–20, 1975.CrossRefGoogle Scholar
  19. [7.19]
    W.M. Webster. On the variation of junction-transistor current-amplification factor with emitter current. Proc. IRE, 42: 914–920, 1954.CrossRefGoogle Scholar
  20. [7.20]
    H.C. de Graaff, F.M. Klaassen. Compact Transistor Modelling for Circuit Design. Springer, Wien, 1990.Google Scholar
  21. [7.21]
    C.T. Kirk. A theory of transistor cutoff frequency (fT) falloff at high current densities. IRE Trans. El. Dey., 9 (5): 164–174, 1962.CrossRefGoogle Scholar
  22. [7.22]
    J.R. Hauser. The effects of distributed base potential on emitter-current injection density and effective base resistance for stripe transistor geometries. IEEE Trans. El. Dev., 11: 238–242, 1964.CrossRefGoogle Scholar
  23. [7.23]
    H.N. Ghosh. A distributed model of the junction transistor and ist application in the prediction of the emitter-base diode characteristic, base impedance, and pulse response of the device. IEEE Trans. El. Dev., 12 (10): 513–531, 1965.Google Scholar
  24. [7.24]
    J.E. Lary, R.L. Anderson. Effective base resistance of bipolar transistors. IEEE Trans. El. Dev., 32 (11): 2503–2505, 1985.CrossRefGoogle Scholar
  25. [7.25]
    S.-W. Lee P. Lloyd J. Prendergast G.M. Kull, L.W. Nagel, H. Dirks. A unified circuit model for bipolar transistors including quasi-saturation effects. IEEE Trans. El. Dev., 32 (6): 1103–1113, 1985.Google Scholar
  26. [7.26]
    R. Beaufoy, J.J. Sparkes. The junction transistor as a charge-controlled device. ATE Journal, 13: 310–327, 1957.Google Scholar
  27. [7.27]
    D.E. Thomas, J.L. Moll. Junction transistor short-circuit current gain and phase determination. Proc. IRE, 46: 1177–1184, 1958.CrossRefGoogle Scholar
  28. [7.28]
    H.F. Cooke. Microwave transistors: Theory and design. Proc. IEEE, 59 (8): 1163–1181, 1971.CrossRefGoogle Scholar
  29. [7.29]
    J. teWinkel. Extended charge-control model for bipolar transistors. IEEE Trans. El. Dev., 20 (4): 389–394, 1973.CrossRefGoogle Scholar
  30. [7.30]
    H.-G. Unger, W. Harth. Hochfrequenz-Halbleiterelektronik. Hirzel, Stuttgart, 1972.Google Scholar
  31. [7.31]
    R. Müller. Rauschen. Springer, Berlin, 2. Auflage, 1990.Google Scholar
  32. [7.32]
    T.F. Meister, R. Stengl, H.W. Meul, R. Weyl, P. Packan, A. Felder, H. Klose, R. Schrei-ter, J. Popp, H.M Rein, L. Treitinger. Sub-20 ps silicon bipolar technology using selective epitaxial growth. IEDM Tech. Dig., 5. 401–404, 1992.Google Scholar
  33. [7.33]
    H. Krömer. Heterostructure bipolar transistors and integrated circuits. Proc. IEEE, 70 (1): 1325, 1982.CrossRefGoogle Scholar
  34. [7.34]
    R. People. Physics and applications of GeSil_x-Si strained-layer heterostructures. IEEE J. Qunatum Electronics, (9): 1696–1710, 1986.Google Scholar
  35. [7.35]
    S.S. Iyer, G.L. Paton, J.M.C. Stork, B.S. Meyerson, D.L. Harame. Heterojunction bipolar transistors using Si-Ge alloys. IEEE Trans. El. Dev., 36 (10): 2043–2064, 1989.CrossRefGoogle Scholar
  36. [7.36]
    D.L. Harame, J.H. Comfort, J.D. Cressler, E.F. Crabbe, J.Y.-C. Sun, B.S. Meyerson, T. Tice. Si/Site epitaxial-base transistors–part I: Materials, physics, and circuits. IEEE Trans. El. Dev., 42 (3): 455–468, 1995.CrossRefGoogle Scholar
  37. [7.37]
    D.L. Harame, J.H. Comfort, J.D. Cressler, E.F. Crabbe, J.Y.-C. Sun, B.S. Meyerson, T. Tice. Si/SiGe epitaxial-base transistors–part II: Process intgration and analog applications. IEEE Trans. El. Dev., 42 (3): 469–482, 1995.CrossRefGoogle Scholar
  38. [7.38]
    S.M. Sze (Ed.). High-Speed Semiconductor Devices. J. Wiley, New York, 1990.Google Scholar
  39. [7.39]
    H. Krämer. Two integral relations pertaining to the electron transport through a bipolar transistor with a nonuniform energy gap in the base region. Sol. St. Electron., 28 (11): 1101–1103, 1985.CrossRefGoogle Scholar
  40. [7.40]
    H. Morkoc, B. Sverdlov, G.-B. Gao. Strained layer heterostructures, and their applications to MODFETs, HBTs and lasers. Proc. IEEE, 81 (4): 493–556, 1993.CrossRefGoogle Scholar
  41. [7.41]
    P.M. Asbeck, F. M.-C. Chang, K.-C. Wang, G.J. Sullivan, D.T. Cheung. GaAs-based heterojunction bipolar transistors for very high performance electronic circuits. Proc. IEEE, 81 (12): 1709–1726, 1993.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Michael Reisch
    • 1
  1. 1.Fachhochschule KemptenHochschule für Technik und WirtschaftKempten/AllgäuDeutschland

Personalised recommendations