Skip to main content

Kombinationen von uni- und bipolaren Leistungsbauelementen

  • Chapter
Elektrische Antriebe 3

Part of the book series: Springer-Lehrbuch ((SLB))

  • 324 Accesses

Zusammenfassung

In den vorherigen Kapiteln waren verschiedene unipolare Bauelemente wie der JFET, der MOSFET und der SIT beschrieben worden. Wie sich aus den Ableitungen ergeben hat, haben diese Bauelemente

  1. 1.

    sehr hohe Schaltgeschwindigkeiten, da bei ihnen keine Ladungsspeicherungseffekte von Minoritätsträgern auftreten,

  2. 2.

    eine geringe Ansteuerleistung, da nur Kapazitäten umgeladen werden müssen,

  3. 3.

    hohe Durchlaßwiderstände, da die niedrig dotierte Driftzone vorhanden sein muß, um hohe Sperr- bzw. Blockierspannungen aufnehmen zu können

  4. 4.

    und sehr viel höhere Kosten bei der Fertigung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

Kapitel 6 IGBT, MCT, FCTh, SITh IGBT

  1. Ajid, J.S.; Baliga, B.J. et al. Comparison of MOS-Gated Bipolar Transistor Structures MADEP-EPE 1991 Florenz, S. 0–148 – 0–151

    Google Scholar 

  2. Baliga, B. J. The Asymmetrical Field Controlled Thyristor. IEEE Trans. Electron Devices (1980), S. 1262–1268

    Google Scholar 

  3. Baliga, B. J. Fast Switching Insulated Gate Transistors IEEE Electron Device Lett., vol. EDL-4, S. 452–454, 1983

    Article  Google Scholar 

  4. Baliga, B. J. Analysis of Insulated Gate Transistor Turn-Off Charecteristics IEEE Electron Device Lett. vol. EDL-6, S. 74–77, Feb. 1985

    Article  Google Scholar 

  5. Baliga, B. J. Evolution of MOS-Bipolar Power Semiconductor Technology Proc. IEEE, vol. 1976, no. 4, S. 409–418, 1988

    Article  Google Scholar 

  6. Baliga, B. J.; Adler, M. S.; Love, R. P.; Grey, P. V.; Zommer, N. D. The Insulated Gate Transistor: a new Three-Terminal MOS-Controlled Bipolar Power Device. IEEE Trans. Electron Devices (1984), S. 821–828

    Google Scholar 

  7. Baliga, B. J.; Adler, M. S.; Gray, V. P.; Love, R. P. Suppressing latch-up in Insulated Gate Transistors IEEE Electron Device Lett., vol. EDL-5, S. 323–325, 1984

    Article  Google Scholar 

  8. Bauer, F.Staticand Dynamik Characteristics of High Voltage (3.5 kV) IGBT and MCT Devices Proc. ISPSD 1992, S. 22–27

    Google Scholar 

  9. Blaabjerg, F. et al. Comparison of NPT and PT IGBT-Devices for Hard Switching Applications IAS 1994 Denver, S. 1168–1173

    Google Scholar 

  10. Consoli, A.; Licitra, C. et al. On the Selection of IGBT Devices in Soft-Switching Applications EPE 1993 Brighton, S. 337–343

    Google Scholar 

  11. Dehmlow, M.; Heumann, K. et al. Comparison of Semiconductor Device Losses in Hard Switched and Zero Voltage Switched Inverter Systems EPE 1993 Brighton, S. 419–424

    Google Scholar 

  12. Dettmer, H. et al. AComparison of the Switching Behavior of IGBT and MCT Power Devices Proc. ISPSD 1993, S. 55–59

    Google Scholar 

  13. Eckel, H. G.; Sack, L. Optimization of the Turn-Off Performance of IGBT at Overcurrent and Short-Circuit Current EPE 1993 Brighton, S. 3177–322

    Google Scholar 

  14. Hefner Jr., A. R.; Blackburn, D. L. Performance Trade-Off for the Insulated Gate Bipolar Transistor: Buffer Layer versus Base Lifetime Reduction IEEE Power Elec. Spec. Conf. Record, S. 27–38, 1986

    Google Scholar 

  15. Herr, E. et al. Improving the Gate Oxide Integrity of Very High Voltage MCT and IGBT Devices by External Gettering of Metal Impurities ISPSD 1994 Davos, S. 213–220

    Google Scholar 

  16. Heumann, K.; Keller, Ch. et al. Comparison of Stresses in IGBT Devices Using the Quasi-Resonant Current Mode MADEP-EPE 1991 Florenz, S. 0–209 – 0–214

    Google Scholar 

  17. Heumann, K.; Quenum, M. Second Breakdown and Latchup Behaviour of IGBTs EPE 1993 Brighton, S. 301–305

    Google Scholar 

  18. Huth, S.; Winterheimer, S. The Switching Behaviour of an IGBT in Zero Current Switch EPE 1993 Brighton, S. 312–316

    Google Scholar 

  19. Kendle, P. D.; Temple, A. K.; Arthur, S.D. Switching Comparison of Generation 1 and Generation 2 P-MCTs and Ultra-fast N-IGBTs IAS 1993, S. 1286–1292

    Google Scholar 

  20. Laska, T. et al. A Low Loss/Highly Rugged IGBT-Generation — Based on a Self Aligned Process with Double Implanted n/n+ — Emitter ISPSD 1994 Davos, S. 171–176

    Google Scholar 

  21. Laska, T.; Miller, G.A 2000 V Non-Punch-Through IGBT with Dynamic Properties like a 1000 V IGBT IEDM Tech. Dig., S. 807–810, 1990

    Google Scholar 

  22. Lee, H. P. et al. The Fast Turn-Off Advanced IGBT, a New Device Concept ISPSD 1994 Davos, S. 63–66

    Google Scholar 

  23. Lefebvre, S. et al. Turn-Off Analysis of the IGBT Used in ZCS Mode ISPSD 1994 Davos, S. 99–104

    Google Scholar 

  24. Li, H. H.; Trivedi, M.; Shenai, K. Dynamics of IGBT Performance in Hard- and Soft-Switching Converters IAS 1995 Orlando, S. 997–1005

    Google Scholar 

  25. Miller, G,; Sack, J.A New Convept for a Non Punch Through IGBT with MOSFET like Switching Characteristic PESC Record 1989

    Google Scholar 

  26. Pathomkasikul, W.; Zinger, D.; Elbuluk, M. E. Comparative Study of IGBTs and MCTs in Resonant D.C. Link Converter IAS 1993, S. 1293–1296

    Google Scholar 

  27. Piconne, D.E. High Power Semiconductor Device and Method of Masking the Same Patent Pending Docket SPC — 101, S.N. 08/280, 984, 21.7.94

    Google Scholar 

  28. Piconne, D.E. MOS Turn Off Thyristor Patent Pending Docket SPC — 110, 30.10.94

    Google Scholar 

  29. Porst, A. Ultimate Limits of an IGBT for High Voltage Applications in Conjunction with a Diode ISPSD 1994 Davos, S. 163–170

    Google Scholar 

  30. Porst, A. Ultimate Limits of an IGBT, MCt, and Diodes ISPSD 91994

    Google Scholar 

  31. Reinmuth, K. A Method for Nondestructive Tests of Bipolar Transistors, IGBTs and MOS-FETs MADEP-EPE 1991 Florenz, S. 0–141 – 0–147

    Google Scholar 

  32. Russel, J. P.; Goodman, A. M.; Neilson, J. M. The COMFET — a new Conductance MOS-Gated Device. IEEE Electron Device Lett. (1983), S. 63–65

    Google Scholar 

  33. Schlangenotto, H.; Neubrand H. Dynamical Avalanche during Turn-Off of GTO-Thyristor and IGBTs Arch. Elektrotechnik 72, S.113–123, Febr. 1989

    Article  Google Scholar 

  34. Takahashi, Y. et al. 2.5 kV 100 A µ-Stack IGBT ISPSD 1994 Davos, S. 31–36

    Google Scholar 

  35. Tanaka, T.; Yasuda, Y.; Ohayashi, M. A new MOS-Gate Bipolar Transistor for Power Switches. IEEE Trans. Electron Devices (1986), S. 2041–2045

    Google Scholar 

  36. Taphar, N.; Baliga, B. J.A New IGBT Structure with a Wider Safe Operating Area (SOA) ISPSD 1994 Davos, S. 177–182

    Google Scholar 

  37. Türkes, P. et al. Critical Switching Condition of a Non-Punch-Through IGBT Investigated by Electrothermal Circuit Simulation ISPSD 1994 Davos, S. 51–56

    Google Scholar 

  38. Widjaja, A. et al. Computer Simulation and Design Optimization of IGBTs in Soft-Switching Converters ISPSD 1994 Davos, S. 105–112

    Google Scholar 

  39. Yamashita, J. et al. A Study on the Turn-Off Failure and Inhomogeneous Operation ISPSD 1994 Davos, S. 63–68

    Google Scholar 

  40. Yilmaz, H.; Benjamin, J. L.; Dyer, R. F.; Li-Shu S. Chen van Dell, W. R.; Pifer, G. C. Comparison of Punch-Through and Non-Punch-Through IGBT Structures. IEEE Trans. on Ind. Appl. IA-22 (1986), S. 466–470

    Article  Google Scholar 

MCT

  1. Arthur, S. D.; Temple, V. A. K. Special 1400 V N-MCT Designed for Surge Applications EPE 1993 Brighton, S. 266–271

    Google Scholar 

  2. Baliga, B. J. Evolution of MOS-Bipolar Power Semiconductor Technology Proc. IEEE, vol. 1976, no. 4, S. 409–418, 1988

    Article  Google Scholar 

  3. Bauer, F. et al. Staticand Dynamik Characteristics of High Voltage (3.5 kV) IGBT and MCT Devices Proc. ISPSD 1992, S. 22–27

    Google Scholar 

  4. Bauer, F.; Haddon, H. et al. Optimization of Cathode Structures for Improved Performance of MOS Controlled Thyristors MADEP-EPE 1991 Florenz, S. 0–270 – 0–275

    Google Scholar 

  5. Consoli, A. Active Voltage Balancement of Series Connected IGBTs IAS 1995 Orlando, S. 2752

    Google Scholar 

  6. Dallmann, G. et al. Two-Dimensional Dopant Profile Characterization for MCT and IGBT Structures ISPSD 1994 Davos, S. 305–308

    Google Scholar 

  7. Dettmer, H. et al. A Comparison of the Switching Behavior of IGBT and MCT Power Devices Proc. ISPSD 1993, S. 55–59

    Google Scholar 

  8. Dettmer, H. et al. 4.5 kV MCT with Buffer Layer and Anode Short Structure ISPSD 1994 Davos, S. 13–21

    Google Scholar 

  9. Dettmer, H.; Lendenmann, H. et al. Turn-Off Behaviour of Structured MCT Cells MADEP-EPE 1991 Florenz, S. 0–258 – 0–261

    Google Scholar 

  10. Goodfellow, J. K.; Williams, B. W. The Bipolar Transistor and GTO Thyristor in a High Power, High Frequency Cascode Switch Configuration. Proc. PESC ′88 (Tokyo 1988), Vol. 2, S. 695–702

    Google Scholar 

  11. Herr, E. et al. Improving the Gate Oxide Integrity of Very High Voltage MCT and IGBT Devices by External Gettering of Metal Impurities ISPSD 1994 Davos, S. 213–220

    Google Scholar 

  12. Hudgins, J. L.; Menhart, S. et al. Temperature Variation Effects on the Switching Characteristics of MOS-Gated Devices MADEP-EPE 1991 Florenz, S. 0–262 – 0–266

    Google Scholar 

  13. Juan, C. Operating Characteristics of MCTs in Resonant DC Link Inverters IAS 1994 Denver, S. 1192–1199

    Google Scholar 

  14. Kendle, P. D.; Temple, A. K.; Arthur, S.D. Switching Comparison of Generation 1 and Generation 2 P-MCTs and Ultra-fast N-IGBTs IEDM Tech. Dig., S. 807–810

    Google Scholar 

  15. Lendenmann, H.; Fichtner, W. Turn-Off Failure Mechanism in Large (2.2 kV, 20 A) MCT Devices ISPSD 1994 Davos, S. 207–212

    Google Scholar 

  16. Motto, E. R.; Donlon, J. F. et al. New Processes Technologies Improve IGBT Module Efficiency IAS 1995 Orlando, S. 991–996

    Google Scholar 

  17. Pathomkasikul, W.; Zinger, D.; Elbuluk, M. E. Comparative Study of IGBTs and MCTs in Resonant D.C. Link Converter IAS 1993, S. 1293–1296

    Google Scholar 

  18. Pierce, D. E.; Mehta, H. MOS Turn-Off Thyristor, MTO Patentanmeldung SPC-110 30.10.1994 der Silicon Power Corporation

    Google Scholar 

  19. Protiwa, F. F.; Seekamp, E. Experimental Results Using MCTs in Hard and Soft Switching Modes EPE 1993 Brighton, S. 350–355

    Google Scholar 

  20. Pshaenich, A. The MOS-SCR, a new Thyristor Technology Motorola Eng. Bull. (1982), ED-103

    Google Scholar 

  21. Robinson, F. V. P.; Williams, B. W. Emitter Switching High Power Transistors. Proc. EPE ′87 (Grenoble 1987), Vol. 1, S. 55–59

    Google Scholar 

  22. Stoisek, M. et. al. A large Area MOS-GTO with Wafer-Repair Technique IEEE IEDM Tech. Dig., S. 666–669, 1987

    Google Scholar 

  23. Stoisek, M.; Strack, H. MOS GTO Turn-Off Thyristor withh MOS-Controlled Emitter Shorts IEEE IEDM Tech. Dig., S. 158–161, 1985

    Google Scholar 

  24. Temple, V. A. K. MOS-Controlled Thyristor — a new Class of Power Devices. IEEE Trans. Electron Devices (1986), S. 1609–1618

    Google Scholar 

  25. Temple, V. A. K. MOS Controlled Thyristor IEDM Tech. Dig., S. 282–286, 1984

    Google Scholar 

FCTh

  1. Griming, H.HardDriven Field Controlled Thyristors (FCTh) — a Concept to Overcome the Constraints of Todays Soft Driven Gate Turn-Off Thyristors (GTO) ISPE 1992 Seoul, S. 51–58

    Google Scholar 

  2. Grüning, H.; Voboril, J.; Gobrecht, J.; Roggwiler, P.; Abbas, C.C.; Broich, B. Properties of High-Power Field-Controlled Thyristor. Proc. Int. Electron Device Meeting (1986), S. 110–113

    Google Scholar 

  3. Grüning, H.; Voboril, J. A New Family of Power Semiconductors with Advanced Circuitry. Proc. PESC ′88 (Tokyo 1988), Vol. 2, S. 1311–1318

    Google Scholar 

  4. Grüning, H.; de Lambilly, H.; Lilja, K. Snubberless Superfast High Power Module Using MOS-Driven Field-Controlled Thyristors. Proc. PESC ′90 (San Antonio 1990), Vol. 1, S. 412–421

    Google Scholar 

  5. Venkataramanan, G.; Mertens, A. et al. Switching Characteristics of Field Controlled Thyristors MADEP-EPE 1991 Florenz, S. 0–220 – 0–225

    Google Scholar 

SITh

  1. Nishizawa, J. High Frequency Base Resistance, Emitter Cut Off and Maximum Power in the Junction Type Transistor. Trans. IECE of Japan 44, No. 5 (May 1961), S. 767–776

    Google Scholar 

  2. Terasawa, Y.; Miyata, M.; Murakami, S.; Nagano, T.; Okamura, M. High Power Static Induction Thyristor. Proc. Int. Electron Device Meeting (1979), S. 250–253

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schröder, D. (1996). Kombinationen von uni- und bipolaren Leistungsbauelementen. In: Elektrische Antriebe 3. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06952-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06952-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57608-2

  • Online ISBN: 978-3-662-06952-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics