Skip to main content

Unipolare Bauelemente

  • Chapter
Elektrische Antriebe 3

Part of the book series: Springer-Lehrbuch ((SLB))

Zusammenfassung

In den vorherigen Kapiteln wurden bipolare Bauelemente behandelt. Bei diesen bipolaren Bauelementen sind an der Stromführung sowohl Majoritätsträger als auch Minoritätsträger beteiligt. Unipolare Bauelemente nutzen bei der Stromführuna daaeaen nur die Majoritätsträger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

Kapitel 5 Unipolare Bauelemente

  1. Allen, F. G.; Gobeli, G. W. Work Function, Photoelectric Threshold and Surface States of Atomically Clean Silicon. Phys. Rev. 127 (1962), S. 150–158

    Article  Google Scholar 

  2. Anderson, S. J.; Roman W. C. et al. High Power Schottky Module Design Improves Efficiency and Rwliability MADEP-EPE 1991 Florenz, S. 0–407 – 0–411

    Google Scholar 

  3. Baliga, B. J. Modern Power Devices Englewood Cliffs (NJ), Printia Hall 1987

    Google Scholar 

  4. Baliga, B. J.; Adler, M.S. et al. Optimum Semiconductors for Power Field Effekt Transistors IEEE Electron Dev. Lett. EDL-2, S. 162–164, July 1981

    Article  Google Scholar 

  5. Beneking, H. Feldeffekttransistoren. Springer Verlag, Berlin, 1973

    Book  Google Scholar 

  6. Berry, J. P. MOSFET Operation Under Hard Switching Mode: Voltage and Current Gradients Control MADEP-EPE 1991 Florenz, S. 0–130 – 0–134

    Google Scholar 

  7. Blackburn, D. L. Failure Mechanism and Nondestructive Testing of Power Bipolar and MOS Gated Transistors MADEP-EPE 1991 Florenz, S. 0–252 – 0–257

    Google Scholar 

  8. Castro, M. L.; Ferreira, A. et al. On the Optimum Switching Operation of Power MOSFETs MADEP-EPE 1991 Florenz, S. 0–125 – 0 – 129

    Google Scholar 

  9. Collins, H. W.; Pelly, B. HEXFET, A New Power Technology, Cuts On-Resistance, Boosts Ratings. Electron. Des. 17 (1979), Nr. 12, S. 36

    Google Scholar 

  10. Cooper, J. A.; Nelson, D. F. High Field Drift Velocity of Electrons at the Si — SiO2 Interface by a Time of Flight Technique. J. Appl. Phys. 54 (1983), S. 1445

    Article  Google Scholar 

  11. Deal, B. E. Standardized Terminology for Oxide Charges Assiociated with Thermally Oxidized Silicon. IEEE Trans. Electron Devices ED-27 (1980), S. 606

    Article  Google Scholar 

  12. Declerq, B. J.; Plummer, J. D. Avaianche Breakdown in High Voltage D-MOS Devices IEEE Trans. Electron Devices, vol. ED-23, S. 1–6, 1976

    Article  Google Scholar 

  13. Frankl, D. R. Some Effects of Material Parameters on the Design of Surface Space-Charge Varactors. Solid State Electron. 2 (1961), S. 71

    Article  Google Scholar 

  14. Götzberger, A. Die Silizium-Siliziumdioxid-Grenzfläche und ihre Untersuchung mit dem MOS-Verfahren.Arch. elektr. Übertr. 20 (1966), S. 241–253

    Google Scholar 

  15. Gray, P. V. The Silicon-Silicon Dioxide System. Proc. IEEE 57 (1969), S. 1543–1551

    Article  Google Scholar 

  16. Grebene, A. B.; Ghandi, S. K. General Theory for Pinched Operation of the Junction-Gate FET. Solid State Electron. 12 (1969), S. 573–589

    Article  Google Scholar 

  17. Grosvalet, J.; Motsch, C.; Tribes, R. Etude de phénomènes fondamentaux determinant les caractéristiques des éléments à effet de champ. Ann. Radioélectricité 17 (1962). S. 265–279

    Google Scholar 

  18. Grove, A. S.; Deal, B. E.; Snow, E. H.; Sah, C. T. Investigation of Thermally Oxidized Silicon Surfaces Using Metal-Oxide-Semiconductor Structures. Solid State Electron. 8 (1965), S. 145–163

    Article  Google Scholar 

  19. Guidini, R.; Chatroux, D. et al. Semiconductor Power Devices in Series EPE 1993 Brighton, S. 425–430

    Google Scholar 

  20. Hauser, J. R. Characteristics of Junction Field Effect Devices with small Channel Length-to-Width Ratios. Solid State Electron. 10 (1967), S. 577–587

    Article  Google Scholar 

  21. Hofstein, S. R. Stabilization of MOS Devices. Solid State Electron. 10 (1967), S. 657–670

    Article  Google Scholar 

  22. Holmes, F. E.; Salama, C. A. T. VMOS — A New MOS Integrated Circuit Technology. Solid State Electron. 17 (1974), S. 791

    Article  Google Scholar 

  23. Hu, C.; Chi, M. H.; Patel, V. M. Optimum Design of Power MOSFET’s IEEE Trans. Electron Devices, vol. ED-31, S. 1693–1700, 1984

    Google Scholar 

  24. Ichijo, M.; Shigekane, H.; Kobayashi S. 1200V Transistor withstands 750 V DC Short-Circuits Currents Power Conv. and Int. Motion, vol. 14, S. 13–18, Dec. 1987

    Google Scholar 

  25. Kajiwara, Y.; Higaki, Y.; Kato, M.; Mitsui, S. Analysis of Operation Mechanism of a Static Induction Transistor Using a Cross-Type Model. Trans. IECE of Japan, J63-C, No. 8 (1980), S. 529–536

    Google Scholar 

  26. Kassakian, J.; Lau, D. An Analysis and Experimental Verification of Parasitic Oscillation in Paralleled Power MOSFETs. IEEE Trans. Electron Devices ED-31 (1984), S. 959–963

    Article  Google Scholar 

  27. Kennedy, D. P.; O’Brien, R. R. Two-dimensional Mathematical Analysis of a Planar Type Junction Field-Effect Transistor. IBM J. Res. Development 13 (1969), S. 662–674

    Article  Google Scholar 

  28. Kennedy, D. P.; O’Brien, R. R. Computer Aided Two-dimensional Analysis of the Junction Field-Effect Transistor. IBM J. Res. Development 14 (1970), S. 95–116

    Article  Google Scholar 

  29. Leedham, R. J.; McMahon, R. A. Design of High Speed Power MOSFET Driver, and Its Use in a Half-Bridge Converter EPE 1993 Brighton, S. 407–412

    Google Scholar 

  30. Lehovec, K.; Slobodskoy, A. Field-Effect Capacitance Analysis of Surface States on Silicon. Phys. Status Solidi 3 (1963), S. 447

    Article  Google Scholar 

  31. Lindner, R. Semiconductor Surface Varactor. Bell Syst. Tech. J. 41 (1962), S. 803

    Google Scholar 

  32. Love, R. P.; Gray, P. V.; Adler M. S. A large area Power MOSFET designed for low Conduction Losses Int. Electron Devices Mtg., abstract 17.4, S. 418–421, 1981

    Google Scholar 

  33. Many, A.; Goldstein, Y.; Grover, N. B. Semiconductor Surfaces. North Holland Publ. Comp., Amsterdam, 1965

    Google Scholar 

  34. Maksimovic D.A MOS Gate Drive with Resonant Transitions. Proceedings PESC’91

    Google Scholar 

  35. McMurray W.,Optimum Snubbers for Power Semiconductors. IEEE TIA, 1972

    Google Scholar 

  36. Nakagawa, A.; Ohashi, H.; Kurata, M.; Yamaguchi, H.; Watanabe, W. Non-Latch-up, 1200 V Bipolar Mode MOSFET with large SOA. Proc. Int. Electron Device Meeting (1984), S. 860–861

    Google Scholar 

  37. Nakagawa, A.; Yamaguchi, H.; Watanabe, W.; Ohashi, H.; Kurata, M. Experimental and Numerical Study of Non-Latch-up Bipolar Mode MOSFET Characteristics. Proc. Int. Electron Device Meeting (1985), S. 150–153

    Google Scholar 

  38. Nicollian, E. H.; Brews, J. R. MOS Physics and Technology. John Wiley, New York, 1982

    Google Scholar 

  39. Nishizawa, J. High Frequency Base Resistance, Emitter Cut Off and Maximum Power in the Junction Type Transistor. Trans. IECE of Japan 44, No. 5 (May 1961), S. 767–776

    Google Scholar 

  40. Nishizawa, J.; Terasaki, T.; Shibata, J. Field-Effect Transistor Versus Analog Transistor (Static Induction Transistor). IEEE Trans. Electron Devices ED-22 (1975), S. 185–197

    Article  Google Scholar 

  41. Nishizawa, J.; Ohmi, T.; Mochida, Y.; Matsuyama, T.; Iida, S. Bipolar Mode Static Induction Transistor. Int. Electron Device Meeting, Technical Digest, (Dec. 1978), S. 676–679.

    Google Scholar 

  42. Oxner, E. S. Power FETs and Their Applications. Prentice-Hall, Englewood Cliffs (NJ), 1982

    Google Scholar 

  43. Prim, R. C; Shockley, W. Joining Solutions at the Pinch-off Point in “Field-Effect” Transistor. IRE-Trans. ED (1953), S. 1–14

    Google Scholar 

  44. Reinmuth, K.; Amann, H. The Ruggedness of Paralleled Power MOSFETs EPE 1993 Brighton, S. 380–384

    Google Scholar 

  45. Sabnis, A. G.; Clemens, J. T. Characterization of the Electron Mobility in the Inverted 100 Si Surface. IEEE Tech. Dig., Int. Electron Dev. Meeting (1979), S. 18

    Google Scholar 

  46. Salama, C. A. T.A New Short Channel MOSFET Structure (UMOST). Solid State Electron. 20 (1977), S. 1003

    Article  Google Scholar 

  47. Sasaki, H.; Sugano, T. Galvanomagnetic Effects in Silicon Surface Inversion Layers. Jap. J. Appl. Phys. 10 (1971), S. 1016–1027

    Article  Google Scholar 

  48. Sigg, H. I.; Vendelin, G. D.; Cauge, T. P.; Kocsis, I. DMOS Transistor for Microwave Application. IEEE Trans. Electron Devices ED-19 (1970), S. 45–53

    Google Scholar 

  49. Sin, J. K. O.; Salama C. A. T.; Hou, L. The SINFET — a Schottky Injection MOS-Gated Power Transistor IEEE Trans. Electron Devices, vol. ED-33, S. 1940–1947, Dec. 1986

    Article  Google Scholar 

  50. Sun, S. C; Plummer, J. D. Modeling of the On-Resistance of LDMOS, VDMOS and VMOS Power Transistors IEEE Trans. Electron Devices, vol. ED-27, S. 356–367, 1980

    Article  Google Scholar 

  51. Tarui, Y.; Hayashi, Y.; Sekigawa, T. Diffusion Self-Aligned Enhance-Depletion MOS-IC. Proc. 2nd Conf. Solid State Devices, Suppl. J. Jpn. Soc. Appl. Phys. 40 (1971), S. 193

    Google Scholar 

  52. Tatsuta, M. et al. High Frequency, High Power Static Induction Transistor IAS 1993, S. 1321–1327

    Google Scholar 

  53. Terman, L. M. An Investigation of Surface States at a Silicon /Silicon Dioxyde Interface Employing Metal-Oxide-Silicon Diodes. Solid State Electron. 5 (1962), S. 285

    Article  Google Scholar 

  54. Tihanyi, J. Smart SIPMOS Technology Siemens Forschung und Entwicklung Bd. 17 1988

    Google Scholar 

  55. Vitale, G. Modelling the Avalanche Injection Phenomena in Bipolar Mode Field Effect Transistors MADEP-EPE 1991 Florenz, S. 0–245 – 0–248

    Google Scholar 

  56. Weinberg S. H.A Novel Lossless Resonant MOSFET Driver. Proceedings PESC’92

    Google Scholar 

  57. Wiliams, R. K.; Shekar M. S. The Influence of the N + Source Region on Parasitic PNP Conduction in Integrated N-Channel DMOS ISPSD 1994 Davos, S. 143–148

    Google Scholar 

  58. Yamaguchi, K. Field-Dependent Mobility Model for Two-Dimensional Numerical Analysis of MOSFETs. IEEE Trans. Electron Devices ED-26 (1979), S. 1068

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schröder, D. (1996). Unipolare Bauelemente. In: Elektrische Antriebe 3. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06952-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06952-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57608-2

  • Online ISBN: 978-3-662-06952-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics