Skip to main content

Part of the book series: Heidelberger Taschenbücher ((HTB,volume 114))

  • 75 Accesses

Zusammenfassung

Sehr viele Probleme aus den Anwendungsgebieten der Mathematik führen auf gewöhnliche Differentialgleichungen. Im einfachsten Fall ist dabei eine differenzierbare Funktion y = y(x) einer reellen Veränderlichen x gesucht, deren Ableitung y′(x) einer Gleichung der Form y′(x) = f(x, y(x)) oder kürzer

$$y' = f(x,y)$$
((7.0.1))

genügen soll; man spricht dann von einer gewöhnlichen Differentialgleichung. Im allgemeinen besitzt (7.0.1) unendlich viele verschiedene Funktionen y als Lösungen. Durch zusätzliche Forderungen kann man gewisse Lösungen aus der Menge aller Lösungen aussondern. So sucht man bei einem Anfangswertproblem eine Lösung y von (7.0.1), die für gegebenes x 0, y 0 einer Anfangsbedingung der Form

$$y(x_0 ) = y_0$$
((7.0.2))

genügt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 7

  1. Babuska, I., Präger, M, Vitasék, E.: Numerical processes in differential equations. New York: Interscience 1966.

    MATH  Google Scholar 

  2. Broyden, C. G.: Quasi-Newton methods and their application to function minimisation. Math. Comp. 21, 368–381 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  3. Bulirsch, R.: Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung. Report der Carl-Cranz-Gesellschaft 1971.

    Google Scholar 

  4. Bulirsch, R., Stoer, J.: Numerical treatment of ordinary differential equations by extrapolation methods. Num. Math. 8, 1–13 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  5. Bulirsch, R., Stoer, J., Deuflhard, P.: Numerical solution of nonlinear two-point boundary value problems I. Handbook Series Approximation, Num. Math.

    Google Scholar 

  6. Butcher, J. C: On Runge-Kutta processes of high order. J. Austr. Math. Soc. 4, 179–194 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciarlet, P. G., Schultz, M. H., Varga, R. S.: Numerical methods of high order accuracy for nonlinear boundary value problems. Num. Math. 9, 394–430 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciarlet, P. G., Wagschal, C: Multipoint Taylor formulas and applications to the finite element method. Num. Math. 17, 84–100 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  9. Clark, N. W.: A study of some numerical methods for the integration of systems of first order ordinary differential equations. Report ANL-7428 (1968). Argonne National Laboratories.

    Google Scholar 

  10. Coddington, E. A., Levinson, N.: Theory of ordinary differential equations. New York: McGraw-Hill 1955.

    MATH  Google Scholar 

  11. Collatz, L.: Funktionalanalysis und Numerische Mathematik. Berlin-Heidelberg-New York: Springer 1968.

    Google Scholar 

  12. Collatz, L.: The numerical treatment of differential equations. Berlin-Göttingen-Heidelberg: Springer 1960.

    Book  MATH  Google Scholar 

  13. Collatz, L., Nicolovius, R.: Rand-und Eigenwertprobleme bei gewöhnlichen und partiellen Differentialgleichungen und Integralgleichungen. In [32], pp. 293-670.

    Google Scholar 

  14. Crane, P. J., Fox, P. A.: A comparative study of computer programs for integrating differential equations. Num. Math. Computer Program library one — Basic routines for general use. Vol. 2, issue 2. New Jersey: Bell Telephone Laboratories Inc., 1969.

    Google Scholar 

  15. Dahlquist, G.: Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand. 4, 33–53 (1956).

    MathSciNet  MATH  Google Scholar 

  16. Dahlquist, G.: Stability and error bounds in the numerical integration of ordinary differential equations. Stockholm: Trans. Roy. Inst. Tech., No. 130 (1959).

    Google Scholar 

  17. Fehlberg, E.: New high-order Runge-Kutta formulas with step size control for systems of first-and second-order differential equations. ZAMM 44, T17–T29 (1964).

    MathSciNet  MATH  Google Scholar 

  18. Fehlberg, E.: New high-order Runge-Kutta formulas with an arbitrarily small truncation error. ZAMM 46, 1–16 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  19. Fehlberg, E.: Klassische Runge-Kutta Formeln fünfter und siebenter Ordnung mit Schrittweiten-Kontrolle. Computing 4, 93–106 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  20. Fröberg, C. E.: Introduction into numerical analysis. London: Addison-Wesley 1966.

    Google Scholar 

  21. Gantmacher, F. R.: Matrizenrechnung II. Berlin: VEB Deutscher Verlag der Wissenschaften 1969.

    Google Scholar 

  22. George, J. A.: Computer implementation of the finite element method. Report CS208 Computer Science Department, Stanford University 1971.

    Google Scholar 

  23. Gragg, W.: Repeated extrapolation to the limit in the numerical solution of ordinary differential equations. Thesis UCLA (1963).

    Google Scholar 

  24. Gragg, W.: On extrapolation algorithms for ordinary initial value problems. J. SIAM Numer. Anal. Ser. B. 2, 384–403 (1965).

    MathSciNet  Google Scholar 

  25. Grigorieff, R. D.: Numerik gewöhnlicher Differentialgleichungen 1, 2. Stuttgart: Teubner, 1972 und 1977.

    Google Scholar 

  26. Henrici, P.: Discrete variable methods in ordinary differential equations. New York: John Wiley 1962.

    MATH  Google Scholar 

  27. Hestenes, M. R.: Calculus of variations and optimal control theory. New York: John Wiley 1966.

    MATH  Google Scholar 

  28. Hull, T. E., Enright, W. H., Fellen, B. M., Sedgwick, A. E.: Comparing numerical methods for ordinary differential equations. SIAM J. Numer: Anal. 9, 603–637 (1972). (Errata ibid. 11, 681 (1974)).

    Article  MathSciNet  MATH  Google Scholar 

  29. Isaacson, E., Keller, H. B.: Analysis of numerical methods. New York: John Wiley 1966.

    MATH  Google Scholar 

  30. Keller, H. B.: Numerical methods for two-point boundary-value problems. London: Blaisdell 1968.

    MATH  Google Scholar 

  31. Osborne, M. R.: On shooting methods for boundary value problems. J. Math. Anal. Appl. 27, 417–433 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  32. Sauer, R., Szabo, I., (Hrsg.): Mathematische Hilfsmittel des Ingenieurs, Teil II. Berlin-Heidelberg-New York: Springer 1969.

    MATH  Google Scholar 

  33. Shanks, E. B.: Solution of differential equations by evaluation of functions. Math. Comp. 20, 21–38 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  34. Törnig, W.: Anfangswertprobleme bei gewöhnlichen und partiellen Differentialgleichungen. In [32], pp. 1-290.

    Google Scholar 

  35. Zlámal, M.: On the finite element method. Num. Math. 12, 394–409 (1968).

    Article  MATH  Google Scholar 

  36. Zlámal, M.: On some finite element procedures for solving second order boundary value problems. Num. Math. 14, 42–48 (1969).

    Article  MATH  Google Scholar 

  37. Deuflhard, P.: A stepsize control for continuation methods with special application to multiple shooting techniques. Report TUM-Math-7627. Technische Universität München 1976.

    Google Scholar 

  38. Diekhoff, H.-J., Lory, P., Oberle, H. J., Pesch, H.-J., Rentrop, P., Seydel, R.: Comparing routines for the numerical solution of initial value problems of ordinary differential equations in multiple shooting. Numer. Math. 27, 449–469 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  39. Fehlberg, E.: Klassische Runge-Kutta Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme. Computing 6, 61–71 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  40. Gear, C. W.: Numerical Initial Value Problems in Ordinary Differential Equations. Englewood Cliffs: Prentice-Hall 1971.

    MATH  Google Scholar 

  41. George, J. A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10, 345–363 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  42. Krogh, F. T.: Changing step size in the integration of differential equations using modified divided differences, Proceedings of the Conference on the Numerical Solution of Ordinary Differential Equations. Lecture Notes in Mathematics, Vol. 362. Berlin-Heidelberg-New York: Springer 1974.

    Google Scholar 

  43. Oden, J. T., Reddy, J. N.: An introduction to the mathematical theory of finite elements. New York: Wiley 1976.

    MATH  Google Scholar 

  44. Sedgwick, A.: An effective variable order variable step Adams method. University of Toronto, Department of Computer Science: Technical Report No. 53, 1973.

    Google Scholar 

  45. Shampine, L. F., Gordon, M. K.: Computer solution of ordinary differential equations. The initial value problem. San Francisco: Freeman and Company 1975.

    Google Scholar 

  46. Shampine, L. F., Watts, H. A., Davenport, S. M.: Solving Nonstiff Ordinary Differential Equations — the State of the Art. SIAM Review 18, 376–411 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  47. Stetter, H. J.: Analysis of discretization methods for ordinary differential equations. Berlin-Heidelberg-New York: Springer 1973.

    Book  MATH  Google Scholar 

  48. Strang, G., Fix, G. J.: An analysis of the finite element method. Englewood Cliffs: Prentice Hall 1973.

    MATH  Google Scholar 

  49. Velte, W.: Direkte Methoden der Variationsrechnung. Stuttgart: Teubner 1976.

    Book  MATH  Google Scholar 

  50. Enright, W. H., Hull, T. E., Lindberg, B.: Comparing numerical methods for stiff systems of ordinary differential equations. BIT 15, 10–48 (1975).

    Article  MATH  Google Scholar 

  51. Hindmarsh, A. C.: Gear-ordinary differential equation system solver. Lawrence Livermore Laboratory, Univ. of California: UCID-3000d Rev. 2, 1972.

    Google Scholar 

  52. Kaps, P., Rentrop, P.: A generalized Runge-Kutta method of order four with step size control for stiff ordinary differential equations. Erscheint in Numer. Math.

    Google Scholar 

  53. Willoughby, R. A.: Stiff differential systems. New York: Plenum Press 1974.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stoer, J., Bulirsch, R. (1978). Gewöhnliche Differentialgleichungen. In: Einführung in die Numerische Mathematik II. Heidelberger Taschenbücher, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06866-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06866-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08840-0

  • Online ISBN: 978-3-662-06866-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics