Advertisement

Nullstellenbestimmung durch Iterationsverfahren. Minimierungsverfahren

  • Josef Stoer
Part of the Heidelberger Taschenbücher book series (HTB, volume 105)

Zusammenfassung

Ein wichtiges Problem ist die Bestimmung der Nullstellen ξ einer gegebenen Funktion f: f (ξ) = 0.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 5

  1. [1]
    Bauer, F. L.: Beiträge zur Entwicklung numerischer Verfahren für programmgesteuerte Rechenanlagen. II. Direkte Faktorisierung eines Polynoms. Bayer. Akad. Wiss. Math. Nat. Kl. S.B. 163–203 (1956).Google Scholar
  2. [2]
    Collatz, L.: Funktionalanalysis und numerische Mathematik. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 120. Berlin-Heidelberg-New York; Springer 1968.Google Scholar
  3. [3]
    Householder, A. S.: The Numerical treatment of a single non-linear equation. New York: McGraw-Hill 1970.Google Scholar
  4. [4]
    Jenkins, M. A., Traub, J. F.: A three-stage variable-shift iteration for polynomial zeros and its relation to generalized Rayleigh iteration. Num. Math. 14, 252–263 (1970).MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Nickel, K.: Die numerische Berechnung der Wurzeln eines Polynoms. Num. Math. 9, 80–98 (1966).MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Marden, M.: The geometry of the zeros of a polynomial in a complex variable. Providence, Rhode Island: Amer. Math. Soc. 1949.Google Scholar
  7. [7]
    Ortega, J. M., Rheinboldt, W. C.: Iterative solution of non-linear equations in several variables. Computer science and applied mathematics. New York-London: Academic Press 1970.Google Scholar
  8. [8]
    Ostrowski, A.M.: Solution of equations and systems of equations. 2. Aufl., New York-London: Academic Press 1966.Google Scholar
  9. [9]
    Peters, G., Wilkinson, J. H.: Eigenvalues of Ax = a.Bx with band symmetric A and B. Comput. J. 12, 398–404 (1969).MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    Peters, G., Wilkinson, J. H.: Practical problems arising in the solution of polynomial equations. J. Inst. Math. Appl. 8, 16–35 (1971).MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Traub, J. F.: Iterative methods for the solution of equations. Englewood Cliffs, N.J.: Prentice Hall 1964.zbMATHGoogle Scholar
  12. [12]
    Wilkinson, J. H.: Rundungsfehler, Deutsche Übersetzung: Heidelberger Taschenbücher, Bd. 44. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  13. [13]
    Blum, E., Oettli, W.: Mathematische Optimierung. Berlin-Heidelberg-New York: Springer 1975.zbMATHCrossRefGoogle Scholar
  14. [14]
    Broyden, C. G.: A class of methods for solving nonlinear simultaneous equations. Math. Comp. 19, 577–593 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    Broyden, C. G.: Quasi-Newton-methods and their application to function minimization. Math. Comp. 21, 368–381 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Broyden, C. G.: The convergence of a class of double rank minimization algorithms 2. The new algorithm. J. Inst. Maths. Applics. 6, 222–231 (1970).MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Broyden, C. G., Dennis, J. E., Moré, J. J.: On the local and superlinear convergence of quasi-Newton methods. J. Inst. Maths. Applies. 12, 223–245 (1973).zbMATHCrossRefGoogle Scholar
  18. [18]
    Collatz, L., Wetterling, W.: Optimierungsaufgaben. Berlin-Heidelberg-New York: Springer 1971.zbMATHCrossRefGoogle Scholar
  19. [19]
    Davidon, W. C.: Variable metric methods for minimization. Argonne National Laboratory Report ANL-5990 (1959).Google Scholar
  20. [20]
    Davidon, W. C.: Optimally conditioned optimization algorithms without line searches. Math. Programming 9, 1–30 (1975).MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    Deuflhard, P.: A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting. Numer. Math. 22, 289–315 (1974).MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    Dixon, L. C. W.: The choice of step length, a crucial factor in the performance of variable metric algorithms. In: Numerical methods for nonlinear optimization (F. A. Lootsma, ed.), 149–170. New York: Academic Press 1971.Google Scholar
  23. [23]
    Fletcher, R., Powell, M. J. D.: A rapidly convergent descent method for minimization. Comp. J. 6, 163–168 (1963).MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24] Oren, S. S., Luenberger, D. G.: Self-scaling variable metric (SSVM)
    algorithms I: Criteria and sufficient conditions for scaling a class of algorithms. Man. Sci. 20, 845–862 (1974).CrossRefGoogle Scholar
  25. [25]
    Oren, S. S., Luenberger, D. G., Spedicato, E.: Optimal conditioning of self-scaling variable metric algorithms. Dept. of Engineering Economic Systems Report ARG-MR 74–5, Stanford University 1974.Google Scholar
  26. [26]
    Powell, M. J. D.: Some global convergence properties of a variable metric algorithm for minimization without exact line searches. Proc. AMS Symposium on Nonlinear Programming, New York 1975.Google Scholar
  27. [27]
    Stoer, J.: On the convergence rate of imperfect minimization algorithms in Broyden’s f-class. Math. Programming 9, 313–335 (1975).MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    Stoer, J.: On the relation between quadratic termination and convergence properties of minimization algorithms. Computer Sci. Dept. Report Stan-CS-75–516, Stanford, 1975.Google Scholar
  29. [29]
    Brent, R. P.: Algorithms for minimization without derivatives. Englewood Cliffs, N. J.: Prentice Hall 1973.Google Scholar
  30. [30]
    Henrici, P.: Applied and computational complex analysis, Vol. 1. New York: Wiley 1974.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Josef Stoer
    • 1
  1. 1.Institut für Angewandte Mathematik und StatistikUniversität WürzburgWürzburgDeutschland

Personalised recommendations